Hyungjun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5843509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrospun Nanofibrous Membrane-Based Colorimetric Device for Rapid and Simple Screening of Amphetamine-Type Stimulants in Drinks. Analytical Chemistry, 2022, 94, 3535-3542.	3.2	11
2	Realâ€ŧime Observation of Structural Dynamics Triggering Excimer Formation in a Perylene Bisimide Foldaâ€dimer by Ultrafast Timeâ€Domain Raman Spectroscopy. Angewandte Chemie, 2022, 134, .	1.6	2
3	Realâ€ŧime Observation of Structural Dynamics Triggering Excimer Formation in a Perylene Bisimide Foldaâ€dimer by Ultrafast Timeâ€Domain Raman Spectroscopy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
4	Innentitelbild: Realâ€time Observation of Structural Dynamics Triggering Excimer Formation in a Perylene Bisimide Foldaâ€dimer by Ultrafast Timeâ€Domain Raman Spectroscopy (Angew. Chem. 13/2022). Angewandte Chemie, 2022, 134, .	1.6	0
5	Theoretical Protocol Based on Long-Range Corrected Density Functional Theory and Tuning of Range-Split Parameter for Two-Electron Two-Proton Reduction of Phenylazocarboxylates. Journal of Physical Chemistry A, 2022, 126, 2430-2436.	1.1	0
6	Machine Learning Applications for Chemical Reactions. Chemistry - an Asian Journal, 2022, 17, .	1.7	13
7	Spin-Flip Density Functional Theory for the Redox Properties of Organic Photoredox Catalysts in Excited States. Journal of Chemical Theory and Computation, 2021, 17, 767-776.	2.3	6
8	Theoretical Engineering of Singlet Fission Kinetics in Perylene Bisimide Dimer with Chromophore Rotation. Journal of Physical Chemistry A, 2021, 125, 875-884.	1.1	6
9	The Role of the Core Attachment Positioning in Triggering Intramolecular Singlet Exciton Fission in Perylene Diimide Tetramers. Journal of Physical Chemistry B, 2021, 125, 5114-5131.	1.2	9
10	Colorimetric paper sensor for visual detection of date-rape drug Î ³ -hydroxybutyric acid (GHB). Sensors and Actuators B: Chemical, 2021, 347, 130598.	4.0	19
11	PIM-PI-1 and Poly(ethylene glycol)/Poly(propylene glycol)-Based Mechanically Robust Copolyimide Membranes with High CO ₂ -Selectivity and an Anti-aging Property: A Joint Experimental–Computational Exploration. ACS Applied Materials & Interfaces, 2021, 13, 49890-49906.	4.0	9
12	Modus Operandi of Simultaneous Covering Synthesis from Precursor Heterogeneity for Shelled Nanorods for Multipotent Cancer Theranostics. Advanced Functional Materials, 2020, 30, 1907203.	7.8	7
13	Application of Intramolecular Singlet Fission in Photovoltaics: Control over Multiexciton Generation and Triplet–Triplet Annihilation. Bulletin of the Korean Chemical Society, 2020, 41, 108-109.	1.0	2
14	Activating intramolecular singlet exciton fission by altering π-bridge flexibility in perylene diimide trimers for organic solar cells. Chemical Science, 2020, 11, 8757-8770.	3.7	22
15	Innenrücktitelbild: Multiexcitonic Triplet Pair Generation in Oligoacene Dendrimers as Amorphous Solidâ€ S tate Miniatures (Angew. Chem. 47/2020). Angewandte Chemie, 2020, 132, 21431-21431.	1.6	Ο
16	Origin of Fluoropolymer Affinity toward Water and Its Impact on Membrane Performance. ACS Applied Polymer Materials, 2020, 2, 5249-5258.	2.0	10
17	CuCl2-promoted decomposition of sulfonyl hydrazides for the synthesis of thiosulfonates. Tetrahedron Letters, 2020, 61, 152112.	0.7	16
18	Experimental, Structural, and Computational Investigation of Mixed Metal–Organic Frameworks from Regioisomeric Ligands for Porosity Control. Crystal Growth and Design, 2020, 20, 5338-5345.	1.4	3

Ηγυνσμη Κιμ

#	Article	IF	CITATIONS
19	Multiexcitonic Triplet Pair Generation in Oligoacene Dendrimers as Amorphous Solidâ€&tate Miniatures. Angewandte Chemie, 2020, 132, 21142-21150.	1.6	2
20	Multiexcitonic Triplet Pair Generation in Oligoacene Dendrimers as Amorphous Solidâ€&tate Miniatures. Angewandte Chemie - International Edition, 2020, 59, 20956-20964.	7.2	30
21	Reductive Electrophotocatalysis: Merging Electricity and Light To Achieve Extreme Reduction Potentials. Journal of the American Chemical Society, 2020, 142, 2087-2092.	6.6	263
22	Efficient Multiexciton State Generation in Charge-Transfer-Coupled Perylene Bisimide Dimers via Structural Control. Journal of the American Chemical Society, 2020, 142, 7845-7857.	6.6	99
23	New Direct Approach for Determining the Reverse Intersystem Crossing Rate in Organic Thermally Activated Delayed Fluorescent (TADF) Emitters. Journal of the American Chemical Society, 2020, 142, 8074-8079.	6.6	52
24	Effect of the Metal within Regioisomeric Paddleâ€Wheelâ€Type Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 14414-14420.	1.7	7
25	Energy refinement and analysis of structures in the QM9 database via a highly accurate quantum chemical method. Scientific Data, 2019, 6, 109.	2.4	15
26	Sustainable and recyclable super engineering thermoplastic from biorenewable monomer. Nature Communications, 2019, 10, 2601.	5.8	83
27	Using ultra-fast spectroscopy to probe the excited state dynamics of a reported highly efficient thermally activated delayed fluorescence chromophore. Journal of Materials Chemistry C, 2019, 7, 4210-4221.	2.7	16
28	Laser desorption/ionization mass spectrometry-based compositional analysis of Au–Ag nanoplates synthesized by galvanic replacement and their application for small molecule analysis. Journal of Industrial and Engineering Chemistry, 2019, 71, 318-326.	2.9	5
29	Coupled double triplet state in singlet fission. Physical Chemistry Chemical Physics, 2018, 20, 30083-30094.	1.3	80
30	Investigating the Optical Properties of Thiophene Additions to <i>s</i> -Indacene Donors with Diketopyrrolopyrrole, Isoindigo, and Thienothiophene Acceptors. Journal of Physical Chemistry C, 2018, 122, 27713-27733.	1.5	11
31	Synergistic effect of UV and l-ascorbic acid on the reduction of graphene oxide: Reduction kinetics and quantum chemical simulations. Solid State Sciences, 2018, 84, 120-125.	1.5	9
32	Heteroatom and Side Chain Effects on the Optical and Photophysical Properties: Ultrafast and Nonlinear Spectroscopy of New Naphtho[1,2- <i>b</i> :5,6- <i>b</i> ′]difuran Donor Polymers. Journal of Physical Chemistry C, 2018, 122, 17049-17066.	1.5	20
33	Enacting Two-Electron Transfer from a Double-Triplet State of Intramolecular Singlet Fission. Journal of the American Chemical Society, 2018, 140, 7760-7763.	6.6	46
34	Charge Transfer and Aggregation Effects on the Performance of Planar vs Twisted Nonfullerene Acceptor Isomers for Organic Solar Cells. Chemistry of Materials, 2018, 30, 4263-4276.	3.2	49
35	Evaluating the Effect of Heteroatoms on the Photophysical Properties of Donor–Acceptor Conjugated Polymers Based on 2,6-Di(thiophen-2-yl)benzo[1,2-b:4,5-bâ€2]difuran: Two-Photon Cross-Section and Ultrafast Time-Resolved Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 14382-14392	1.5	27
36	Reducing Agent-Assisted Excessive Galvanic Replacement Mediated Seed-Mediated Synthesis of Porous Gold Nanoplates and Highly Efficient Gene-Thermo Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 35268-35278.	4.0	31

Нуимсјим Кім

#	Article	IF	CITATIONS
37	Density Functional Physicality in Electronic Coupling Estimation: Benchmarks and Error Analysis. Journal of Physical Chemistry Letters, 2017, 8, 3242-3248.	2.1	14
38	Achieving Accurate Reduction Potential Predictions for Anthraquinones in Water and Aprotic Solvents: Effects of Inter- and Intramolecular H-Bonding and Ion Pairing. Journal of Physical Chemistry C, 2016, 120, 22235-22247.	1.5	41
39	Prediction of the reduction potential of tris(2,2′-bipyridinyl)iron(III/II) derivatives. Journal of Computational Chemistry, 2015, 36, 33-41.	1.5	11
40	A protocol to evaluate one electron redox potential for iron complexes. Journal of Computational Chemistry, 2013, 34, 2233-2241.	1.5	36