
Kaushik Chatterjee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5843474/publications.pdf Version: 2024-02-01

KALISHIK CHATTERIFE

#	Article	IF	CITATIONS
1	The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials, 2010, 31, 5051-5062.	11.4	265
2	The determination of stem cell fate by 3D scaffold structures through the control of cell shape. Biomaterials, 2011, 32, 9188-9196.	11.4	264
3	Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness. Acta Materialia, 2019, 162, 239-254.	7.9	214
4	Chemical Functionalization of Graphene To Augment Stem Cell Osteogenesis and Inhibit Biofilm Formation on Polymer Composites for Orthopedic Applications. ACS Applied Materials & Interfaces, 2015, 7, 3237-3252.	8.0	170
5	Recent advances in the field of transition metal dichalcogenides for biomedical applications. Nanoscale, 2018, 10, 16365-16397.	5.6	147
6	Recent advances in engineering topography mediated antibacterial surfaces. Nanoscale, 2015, 7, 15568-15575.	5.6	143
7	Comprehensive Review on the Use of Graphene-Based Substrates for Regenerative Medicine and Biomedical Devices. ACS Applied Materials & Interfaces, 2016, 8, 26431-26457.	8.0	141
8	Surface functionalization of 3D printed polymer scaffolds to augment stem cell response. Materials and Design, 2019, 161, 44-54.	7.0	130
9	Engineering a nanostructured "super surface―with superhydrophobic and superkilling properties. RSC Advances, 2015, 5, 44953-44959.	3.6	128
10	Elucidating microstructural evolution and strengthening mechanisms in nanocrystalline surface induced by surface mechanical attrition treatment of stainless steel. Acta Materialia, 2017, 122, 138-151.	7.9	115
11	Modulus-driven differentiation of marrow stromal cells in 3D scaffolds that is independent of myosin-based cytoskeletal tension. Biomaterials, 2011, 32, 2256-2264.	11.4	113
12	Nanoscale Topography on Black Titanium Imparts Multi-biofunctional Properties for Orthopedic Applications. Scientific Reports, 2017, 7, 41118.	3.3	111
13	Engineering a multi-biofunctional composite using poly(ethylenimine) decorated graphene oxide for bone tissue regeneration. Nanoscale, 2016, 8, 6820-6836.	5.6	107
14	Nanostructured scaffold as a determinant of stem cell fate. Stem Cell Research and Therapy, 2016, 7, 188.	5.5	99
15	Macroporous three-dimensional graphene oxide foams for dye adsorption and antibacterial applications. RSC Advances, 2016, 6, 1231-1242.	3.6	99
16	Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold. Nanoscale, 2015, 7, 2023-2033.	5.6	91
17	Multi-scale surface topography to minimize adherence and viability of nosocomial drug-resistant bacteria. Materials and Design, 2018, 140, 332-344.	7.0	87
18	Perovskite ceramic nanoparticles in polymer composites for augmenting bone tissue regeneration. Nanotechnology, 2014, 25, 485101.	2.6	84

#	Article	IF	CITATIONS
19	Enhanced Metastatic Potential in a 3D Tissue Scaffold toward a Comprehensive <i>in Vitro</i> Model for Breast Cancer Metastasis. ACS Applied Materials & Interfaces, 2015, 7, 27810-27822.	8.0	82
20	Multifunctional biodegradable polymer nanocomposite incorporating graphene-silver hybrid for biomedical applications. Materials and Design, 2016, 108, 319-332.	7.0	81
21	Non-equilibrium microstructure, crystallographic texture and morphological texture synergistically result in unusual mechanical properties of 3D printed 316L stainless steel. Additive Manufacturing, 2019, 28, 65-77.	3.0	73
22	Comprehensive review on alloy design, processing, and performance of <i>Ĵ²</i> Titanium alloys as biomedical materials. International Materials Reviews, 2021, 66, 114-139.	19.3	71
23	Amine-functionalized multiwall carbon nanotubes impart osteoinductive and bactericidal properties in poly(Îμ-caprolactone) composites. RSC Advances, 2014, 4, 19086-19098.	3.6	64
24	Enhancing the mechanical and biological performance of a metallic biomaterial for orthopedic applications through changes in the surface oxide layer by nanocrystalline surface modification. Nanoscale, 2015, 7, 7704-7716.	5.6	63
25	Biofunctionalized surface-modified silver nanoparticles for gene delivery. Journal of Materials Chemistry B, 2015, 3, 5266-5276.	5.8	62
26	Multi-biofunctional polymer graphene composite for bone tissue regeneration that elutes copper ions to impart angiogenic, osteogenic and bactericidal properties. Colloids and Surfaces B: Biointerfaces, 2017, 159, 293-302.	5.0	61
27	Curcumin eluting nanofibers augment osteogenesis toward phytochemical based bone tissue engineering. Biomedical Materials (Bristol), 2016, 11, 055007.	3.3	60
28	Polymers and Composites Derived from Castor Oil as Sustainable Materials and Degradable Biomaterials: Current Status and Emerging Trends. Biomacromolecules, 2020, 21, 4639-4662.	5.4	60
29	3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 732-749.	3.4	57
30	Comparative study of keratin extraction from human hair. International Journal of Biological Macromolecules, 2019, 133, 382-390.	7.5	56
31	Combinatorial screening of osteoblast response to 3D calcium phosphate/poly(ε-caprolactone) scaffolds using gradients and arrays. Biomaterials, 2011, 32, 1361-1369.	11.4	55
32	Controlled nanoscale precipitation to enhance the mechanical and biological performances of a metastable β Ti-Nb-Sn alloy for orthopedic applications. Materials and Design, 2017, 126, 226-237.	7.0	55
33	Light-based 3D bioprinting of bone tissue scaffolds with tunable mechanical properties and architecture from photocurable silk fibroin. International Journal of Biological Macromolecules, 2022, 202, 644-656.	7.5	51
34	Graphene scavenges free radicals to synergistically enhance structural properties in a gamma-irradiated polyethylene composite through enhanced interfacial interactions. Physical Chemistry Chemical Physics, 2015, 17, 22900-22910.	2.8	49
35	In situ preparation of multicomponent polymer composite nanofibrous scaffolds with enhanced osteogenic and angiogenic activities. Materials Science and Engineering C, 2019, 94, 565-579.	7.3	48
36	Engineering a Piperine Eluting Nanofibrous Patch for Cancer Treatment. ACS Biomaterials Science and Engineering, 2016, 2, 1376-1385.	5.2	47

#	Article	IF	CITATIONS
37	Surface mechanical attrition treatment of additively manufactured 316L stainless steel yields gradient nanostructure with superior strength and ductility. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 820, 141540.	5.6	47
38	Tissue mimetic 3D scaffold for breast tumor-derived organoid culture toward personalized chemotherapy. Colloids and Surfaces B: Biointerfaces, 2019, 180, 334-343.	5.0	46
39	Engineering the next-generation tin containing Î ² titanium alloys with high strength and low modulus for orthopedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 124-133.	3.1	44
40	Mimicking Insect Wings: The Roadmap to Bioinspiration. ACS Biomaterials Science and Engineering, 2019, 5, 3139-3160.	5.2	42
41	Nanostructured polymer scaffold decorated with cerium oxide nanoparticles toward engineering an anti-hypertrophic cardiac patch. Materials Science and Engineering C, 2021, 118, 111416.	7.3	41
42	Combinatorial Approach to Develop Tailored Biodegradable Poly(xylitol dicarboxylate) Polyesters. Biomacromolecules, 2014, 15, 4302-4313.	5.4	40
43	Dendron conjugation to graphene oxide using click chemistry for efficient gene delivery. RSC Advances, 2015, 5, 50196-50211.	3.6	40
44	Copolyesters from Soybean Oil for Use as Resorbable Biomaterials. ACS Sustainable Chemistry and Engineering, 2015, 3, 880-891.	6.7	40
45	Study of the influence of Zr on the mechanical properties and functional response of Ti-Nb-Ta-Zr-O alloy for orthopedic applications. Materials and Design, 2019, 164, 107555.	7.0	40
46	Strontium eluting nanofibers augment stem cell osteogenesis for bone tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2016, 146, 649-656.	5.0	39
47	Inflammatory Role of Cancer-Associated Fibroblasts in Invasive Breast Tumors Revealed Using a Fibrous Polymer Scaffold. ACS Applied Materials & Interfaces, 2018, 10, 33814-33826.	8.0	38
48	The importance of crystallographic texture in the use of titanium as an orthopedic biomaterial. RSC Advances, 2014, 4, 38078-38087.	3.6	37
49	Surface nanostructuring of titanium imparts multifunctional properties for orthopedic and cardiovascular applications. Materials and Design, 2018, 144, 169-181.	7.0	35
50	<p>Poly(Ethylene Glycol) Functionalized Graphene Oxide in Tissue Engineering: A Review on Recent Advances</p> . International Journal of Nanomedicine, 2020, Volume 15, 5991-6006.	6.7	35
51	In Situ Silication of Polymer Nanofibers to Engineer Multiâ€Biofunctional Composites. ChemistrySelect, 2018, 3, 3762-3773.	1.5	34
52	Surface engineering of additively manufactured titanium alloys for enhanced clinical performance of biomedical implants: A review of recent developments. Bioprinting, 2022, 25, e00180.	5.8	34
53	Ontology analysis of global gene expression differences of human bone marrow stromal cells cultured on 3D scaffolds or 2D films. Biomaterials, 2014, 35, 6716-6726.	11.4	32
54	Enzymatically degradable EMI shielding materials derived from PCL based nanocomposites. RSC Advances, 2015, 5, 17716-17725.	3.6	32

#	Article	IF	CITATIONS
55	Controlled Release of Salicylic Acid from Biodegradable Cross-Linked Polyesters. Molecular Pharmaceutics, 2015, 12, 3479-3489.	4.6	30
56	Polyester derived from recycled poly(ethylene terephthalate) waste for regenerative medicine. RSC Advances, 2014, 4, 58805-58815.	3.6	29
57	Synergistic interactions between silver decorated graphene and carbon nanotubes yield flexible composites to attenuate electromagnetic radiation. Nanotechnology, 2017, 28, 025201.	2.6	29
58	Development of Graphene Oxide-/Galactitol Polyester-Based Biodegradable Composites for Biomedical Applications. ACS Omega, 2017, 2, 5545-5556.	3.5	27
59	Surface mechanical attrition treatment of low modulus Ti-Nb-Ta-O alloy for orthopedic applications. Materials Science and Engineering C, 2020, 110, 110729.	7.3	27
60	Polyanhydrides of Castor Oil–Sebacic Acid for Controlled Release Applications. Industrial & Engineering Chemistry Research, 2014, 53, 7891-7901.	3.7	26
61	A simplified protocol for culture of murine neonatal cardiomyocytes on nanoscale keratin coated surfaces. International Journal of Cardiology, 2017, 232, 160-170.	1.7	26
62	Elucidating molecular events underlying topography mediated cardiomyogenesis of stem cells on 3D nanofibrous scaffolds. Materials Science and Engineering C, 2018, 88, 104-114.	7.3	26
63	Enhanced biomechanical performance of additively manufactured Ti-6Al-4V bone plates. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 119, 104552.	3.1	25
64	Strategies to Promote Vascularization in 3D Printed Tissue Scaffolds: Trends and Challenges. Biomacromolecules, 2022, 23, 2730-2751.	5.4	25
65	Fabricating Gradient Hydrogel Scaffolds for 3D Cell Culture. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 227-236.	1.1	24
66	The control of crystallographic texture in the use of magnesium as a resorbable biomaterial. RSC Advances, 2014, 4, 55677-55684.	3.6	24
67	Poly(ester amide)s from Soybean Oil for Modulated Release and Bone Regeneration. ACS Applied Materials & Interfaces, 2016, 8, 25170-25184.	8.0	24
68	Biodegradable polyol-based polymers for biomedical applications. International Materials Reviews, 2019, 64, 288-309.	19.3	24
69	Biomaterials-based formulations and surfaces to combat viral infectious diseases. APL Bioengineering, 2021, 5, 011503.	6.2	24
70	Facile synthesis of vanadia nanoparticles and assessment of antibacterial activity and cytotoxicity. Materials Technology, 2016, 31, 562-573.	3.0	22
71	Poly(ester amide)s from Poly(ethylene terephthalate) Waste for Enhancing Bone Regeneration and Controlled Release. ACS Applied Materials & Interfaces, 2017, 9, 28281-28297.	8.0	22
72	Engineering a 3D MoS2 foam using keratin exfoliated nanosheets. Chemical Engineering Journal, 2019, 374, 254-262.	12.7	22

#	Article	IF	CITATIONS
73	Enzymatically degradable and flexible bio-nanocomposites derived from PHBV and PBAT blend: assessing thermal, morphological, mechanical, and biodegradation properties. Colloid and Polymer Science, 2015, 293, 2921-2930.	2.1	21
74	Tailored nitrogen dioxide sensing response of three-dimensional graphene foam. Sensors and Actuators B: Chemical, 2016, 222, 21-27.	7.8	21
75	Role of Microtubules in Osteogenic Differentiation of Mesenchymal Stem Cells on 3D Nanofibrous Scaffolds. ACS Biomaterials Science and Engineering, 2017, 3, 551-559.	5.2	21
76	â€~Template-free' hierarchical MoS ₂ foam as a sustainable â€~green' scavenger of heavy meta and bacteria in point of use water purification. Nanoscale Advances, 2020, 2, 2824-2834.	lls 4.6	21
77	Gas-Foamed Scaffold Gradients for Combinatorial Screening in 3D. Journal of Functional Biomaterials, 2012, 3, 173-182.	4.4	20
78	Biodegradable galactitol based crosslinked polyesters for controlled release and bone tissue engineering. Materials Science and Engineering C, 2017, 77, 534-547.	7.3	20
79	A Novel Ex Vivo System Using 3D Polymer Scaffold to Culture Circulating Tumor Cells from Breast Cancer Patients Exhibits Dynamic E-M Phenotypes. Journal of Clinical Medicine, 2019, 8, 1473.	2.4	20
80	Digital light processing-based 3D bioprinting of κ-carrageenan hydrogels for engineering cell-loaded tissue scaffolds. Carbohydrate Polymers, 2022, 290, 119508.	10.2	20
81	Designer porous antibacterial membranes derived from thermally induced phase separation of PS/PVME blends decorated with an electrospun nanofiber scaffold. RSC Advances, 2016, 6, 10865-10872.	3.6	19
82	Nanoscale heterojunctions of rGO-MoS ₂ composites for nitrogen dioxide sensing at room temperature. Nano Express, 2020, 1, 010003.	2.4	19
83	Surface engineering of biodegradable implants: emerging trends in bioactive ceramic coatings and mechanical treatments. Materials Advances, 2021, 2, 7820-7841.	5.4	19
84	Surface Decoration of Redox-Modulating Nanoceria on 3D-Printed Tissue Scaffolds Promotes Stem Cell Osteogenesis and Attenuates Bacterial Colonization. Biomacromolecules, 2022, 23, 226-239.	5.4	19
85	Engineering an in vitro organotypic model for studying cardiac hypertrophy. Colloids and Surfaces B: Biointerfaces, 2018, 165, 355-362.	5.0	18
86	Surface Severe Plastic Deformation of an Orthopedic Ti–Nb–Sn Alloy Induces Unusual Precipitate Remodeling and Supports Stem Cell Osteogenesis through Akt Signaling. ACS Biomaterials Science and Engineering, 2018, 4, 3132-3142.	5.2	18
87	Isolation and Culture of Neonatal Murine Primary Cardiomyocytes. Current Protocols, 2021, 1, e196.	2.9	18
88	Review of recent developments in surface nanocrystallization of metallic biomaterials. Nanoscale, 2021, 13, 2286-2301.	5.6	18
89	Tailoring the degradation rate and release kinetics from poly(galactitol sebacate) by blending with chitosan, alginate or ethyl cellulose. International Journal of Biological Macromolecules, 2016, 93, 1591-1602.	7.5	16
90	Bioinspired nanostructured bactericidal surfaces. Current Opinion in Chemical Engineering, 2021, 34, 100741.	7.8	16

#	Article	IF	CITATIONS
91	Fiber Diameter Differentially Regulates Function of Retinal Pigment and Corneal Epithelial Cells on Nanofibrous Tissue Scaffolds. ACS Applied Bio Materials, 2020, 3, 823-837.	4.6	14
92	Additive manufacturing of Co–Cr alloys for biomedical applications: A concise review. Journal of Materials Research, 2021, 36, 3746-3760.	2.6	14
93	Controlled release kinetics of p-aminosalicylic acid from biodegradable crosslinked polyesters for enhanced anti-mycobacterial activity. Acta Biomaterialia, 2016, 30, 168-176.	8.3	13
94	Processing–Microstructure–Crystallographic Texture–Surface Property Relationships in Friction Stir Processing of Titanium. Journal of Materials Engineering and Performance, 2017, 26, 4206-4216.	2.5	13
95	Role of aging induced \hat{I}_{\pm} precipitation on the mechanical and tribocorrosive performance of a \hat{I}^2 Ti-Nb-Ta-O orthopedic alloy. Materials Science and Engineering C, 2019, 103, 109755.	7.3	13
96	A nanopillar array on black titanium prepared by reactive ion etching augments cardiomyogenic commitment of stem cells. Nanoscale, 2019, 11, 20766-20776.	5.6	13
97	Localized delivery and enhanced osteogenic differentiation with biodegradable galactitol polyester elastomers. RSC Advances, 2016, 6, 61492-61504.	3.6	12
98	Maltitol-based biodegradable polyesters with tailored degradation and controlled release for bone regeneration. RSC Advances, 2016, 6, 40539-40551.	3.6	12
99	A self-assembling polycationic nanocarrier that exhibits exceptional gene transfection efficiency. RSC Advances, 2015, 5, 91619-91632.	3.6	11
100	Keratin mediated attachment of stem cells to augment cardiomyogenic lineage commitment. Colloids and Surfaces B: Biointerfaces, 2017, 151, 178-188.	5.0	11
101	Variant selection in metastable β Ti-V-Fe-Al alloy during triaxial and uniaxial compression. Materialia, 2018, 4, 20-32.	2.7	11
102	Laser Powder Bed Fusion Additive Manufacturing of a Low-Modulus Ti–35Nb–7Zr–5Ta Alloy for Orthopedic Applications. ACS Omega, 2022, 7, 8506-8517.	3.5	11
103	Fe ₃ O ₄ @Ag and Ag@Fe ₃ O ₄ Core–Shell Nanoparticles for Radiofrequency Shielding and Bactericidal Activity. ACS Applied Nano Materials, 2022, 5, 237-248.	5.0	11
104	Synthesis of a Block Copolymer Exhibiting Cell-Responsive Phytochemical Release for Cancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 21816-21824.	8.0	10
105	Sirtuin 6 mediated stem cell cardiomyogenesis on protein coated nanofibrous scaffolds. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 19, 145-155.	3.3	10
106	Microstructural study and mechanical characterisation of heat-treated direct metal laser sintered Ti6Al4V for biomedical applications. Materials Technology, 2022, 37, 260-271.	3.0	10
107	Theoretical and computational investigations into mechanobactericidal activity of nanostructures at the bacteria-biomaterial interface: a critical review. Nanoscale, 2021, 13, 647-658.	5.6	10
108	Senescent cells in 3D culture show suppressed senescence signatures. Biomaterials Science, 2021, 9, 6461-6473.	5.4	10

#	Article	IF	CITATIONS
109	3D Tumor Models for Breast Cancer: Whither We Are and What We Need. ACS Biomaterials Science and Engineering, 2021, 7, 3470-3486.	5.2	10
110	A designer cell culture insert with a nanofibrous membrane toward engineering an epithelial tissue model validated by cellular nanomechanics. Nanoscale Advances, 2021, 3, 4714-4725.	4.6	9
111	Bactericidal Anisotropic Nanostructures on Titanium Fabricated by Maskless Dry Etching. ACS Applied Nano Materials, 2022, 5, 4447-4461.	5.0	9
112	Anodization of medical grade stainless steel for improved corrosion resistance and nanostructure formation targeting biomedical applications. Electrochimica Acta, 2022, 416, 140274.	5.2	9
113	Oligomer-grafted graphene in a soft nanocomposite augments mechanical properties and biological activity. Materials and Design, 2017, 126, 238-249.	7.0	8
114	MiRNomics Reveals Breast Cancer Cells Cultured on 3D Scaffolds Better Mimic Tumors in Vivo than Conventional 2D Culture. ACS Biomaterials Science and Engineering, 2018, 4, 116-127.	5.2	8
115	Degradable poly(ester amide)s from olive oil for biomedical applications. Emergent Materials, 2019, 2, 153-168.	5.7	8
116	Challenges and opportunities in blood flow through porous substrate: A design and interface perspective of dried blood spot. Journal of Pharmaceutical and Biomedical Analysis, 2019, 175, 112772.	2.8	8
117	Modified fermi level in strontium nanoparticles decorated reduced graphene oxide for wide concentration detection of nitrogen dioxide at room temperature. Materials Research Express, 2019, 6, 065611.	1.6	8
118	Protective Role of Decellularized Human Amniotic Membrane from Oxidative Stress-Induced Damage on Retinal Pigment Epithelial Cells. ACS Biomaterials Science and Engineering, 2019, 5, 357-372.	5.2	8
119	Zinc and cerium synergistically enhance the mechanical properties, corrosion resistance, and osteogenic activity of magnesium as resorbable biomaterials. Biomedical Materials (Bristol), 2021, 16, 044109.	3.3	8
120	Electrophoretic Deposition of Nanocrystalline Calcium Phosphate Coating for Augmenting Bioactivity of Additively Manufactured Ti-6Al-4V. ACS Materials Au, 2022, 2, 132-142.	6.0	8
121	Controlled release from aspirin based linear biodegradable poly(anhydride esters) for anti-inflammatory activity. International Journal of Pharmaceutics, 2017, 528, 732-740.	5.2	7
122	Controlled Release of Usnic Acid from Biodegradable Polyesters to Inhibit Biofilm Formation. ACS Biomaterials Science and Engineering, 2017, 3, 291-303.	5.2	7
123	Tailored Degradation and Dye Release from Poly(ester amides). Polymer-Plastics Technology and Engineering, 2017, 56, 635-646.	1.9	7
124	Establishing the microstructure-strengthening correlation in severely deformed surface of titanium. Philosophical Magazine, 2018, 98, 2095-2119.	1.6	7
125	Recapitulating pathophysiology of skeletal muscle diseases in vitro using primary mouse myoblasts on a nanofibrous platform. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32, 102341.	3.3	6
126	Olive oil-derived degradable polyurethanes for bone tissue regeneration. Industrial Crops and Products, 2022, 185, 115136.	5.2	6

#	Article	IF	CITATIONS
127	Microstructure, Texture and Mechanical Properties after Cold Working and Annealing in a Biomedical Ti-Nb-Ta Alloy. Materials Science Forum, 0, 941, 2465-2470.	0.3	5
128	Gradient platform for combinatorial screening of thermoset polymers for biomedical applications. Materials Science and Engineering C, 2019, 94, 766-777.	7.3	5
129	Isolation and purification of fucoidan from Sargassum ilicifolium: Osteogenic differentiation potential in mesenchymal stem cells for bone tissue engineering. Journal of the Taiwan Institute of Chemical Engineers, 2022, 136, 104418.	5.3	5
130	Physical insights into salicylic acid release from poly(anhydrides). Physical Chemistry Chemical Physics, 2016, 18, 2112-2119.	2.8	4
131	Ultraâ€Sensitive Detection of Proteins Using Chemically Modified Nanoporous PVDF Membrane with Attenuated Near IR Autofluorescence. ChemistrySelect, 2018, 3, 3839-3847.	1.5	4
132	Conjugated Bio-Polymer Anchored Surfaces to Mitigate Stain and Bacterial Colonization for Oral Hygiene Application. ACS Applied Polymer Materials, 2021, 3, 4812-4824.	4.4	4
133	Surface-modified WE43 magnesium alloys for reduced degradation and superior biocompatibility. In Vitro Models, 0, , .	2.0	4
134	Evolution of Deformation Texture in Low Modulus β Ti-34Nb-2Ta-(0, 3)Zr-0.5O Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 4045-4058.	2.2	3
135	Emerging trends in biliary stents: a materials and manufacturing perspective. Biomaterials Science, 2022, 10, 3716-3729.	5.4	3
136	Giant dielectric macroporous graphene oxide foams with aqueous salt solutions: Impedance spectroscopy. Carbon, 2019, 155, 44-49.	10.3	2
137	Ti6Al7Nb–TiB nanocomposites for ortho-implant applications. Journal of Materials Research, 2022, 37, 2525-2535.	2.6	2
138	Anisotropy of Additively Manufactured Co–28Cr–6Mo Influences Mechanical Properties and Biomedical Performance. ACS Applied Materials & Interfaces, 2022, 14, 21906-21915.	8.0	2
139	Biomaterials Research in India—An ACS Applied Bio Materials Forum. ACS Applied Bio Materials, 2019, 2, 5216-5217.	4.6	0
140	Abstract 411: Surface Engineering Strategies to Study Diseases of Heart and Skeletal Muscle. Circulation Research, 2019, 125, .	4.5	0
141	Mechanical and electrochemical response in Surface treated low modulus biomedical alloy Ti-Nb-Ta-O. MATEC Web of Conferences, 2020, 321, 05014.	0.2	0
142	Guest Editorial: Materials for a Sustainable Future. Journal of the Indian Institute of Science, 0, , .	1.9	0