Fernando Iglesias-Guerra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5843100/publications.pdf

Version: 2024-02-01

44 papers 1,199 citations

430874 18 h-index 34 g-index

47 all docs

47 docs citations

47 times ranked

1333 citing authors

#	Article	IF	CITATIONS
1	In Vitro Anticancer Activity and Mechanism of Action of an Aziridinyl Galactopyranoside. Biomedicines, 2022, 10, 41.	3.2	1
2	Serinol-Based Benzoic Acid Esters as New Scaffolds for the Development of Adenovirus Infection Inhibitors: Design, Synthesis, and <i>In Vitro</i> Biological Evaluation. ACS Infectious Diseases, 2021, 7, 1433-1444.	3.8	7
3	GPR120/FFAR4 Pharmacology: Focus on Agonists in Type 2 Diabetes Mellitus Drug Discovery. Journal of Medicinal Chemistry, 2021, 64, 4312-4332.	6.4	33
4	Design, synthesis and in vitro biological evaluation of a novel class of anti-adenovirus agents based on 3-amino-1,2-propanediol. Bioorganic Chemistry, 2021, 114, 105095.	4.1	5
5	Optimization of piperazine-derived ureas privileged structures for effective antiadenovirus agents. European Journal of Medicinal Chemistry, 2020, 185, 111840.	5.5	15
6	Exploration of piperazine-derived thioureas as antibacterial and anti-inflammatory agents. In vitro evaluation against clinical isolates of colistin-resistant Acinetobacter baumannii. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127411.	2.2	10
7	Selective cytotoxic activity and DNA damage by an epoxyalkyl galactopyranoside. Drug Development Research, 2018, 79, 426-436.	2.9	1
8	New 4-Acyl-1-phenylaminocarbonyl-2-phenylpiperazine Derivatives as Potential Inhibitors of Adenovirus Infection. Synthesis, Biological Evaluation, and Structure–activity Relationships. Journal of Medicinal Chemistry, 2016, 59, 5432-5448.	6.4	26
9	THDP17 Decreases Ammonia Production through Glutaminase Inhibition. A New Drug for Hepatic Encephalopathy Therapy. PLoS ONE, 2014, 9, e109787.	2.5	13
10	Aziridines from alkenyl- \hat{l}^2 -D-galactopyranoside derivatives: Stereoselective synthesis and in \hat{A} vitro selective anticancer activity. European Journal of Medicinal Chemistry, 2013, 70, 380-392.	5.5	15
11	Temperature- and Salinity-Decoupled Overproduction of Hydroxyectoine by Chromohalobacter salexigens. Applied and Environmental Microbiology, 2013, 79, 1018-1023.	3.1	29
12	Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiology, 2012, 12, 207.	3.3	107
13	Role of Trehalose in Salinity and Temperature Tolerance in the Model Halophilic Bacterium Chromohalobacter salexigens. PLoS ONE, 2012, 7, e33587.	2.5	59
14	Isoprenyl-thiourea and urea derivatives as new farnesyl diphosphate analogues: Synthesis and inÂvitro antimicrobial and cytotoxic activities. European Journal of Medicinal Chemistry, 2012, 58, 591-612.	5.5	53
15	Stereoselective Dihydroxylation Reaction of Alkenyl βâ€ <scp>D</scp> â€Hexopyranosides: A Methodology for the Synthesis of Glycosylglycerol Derivatives and 1â€ <i>O</i> â€Acylâ€3â€ <i>O</i> â6€4cylâ€3â€ <i>O</i> â6€4cylâ€3â€â6€4cylâ€3â€â6€4cylâ£4cylâ	ırnal of	5
16	New mannose-derived ketones as organocatalysts for enantioselective dioxirane-mediated epoxidation of arylalkenes. Part 3: Chiral ketones from sugars. Tetrahedron, 2011, 67, 7057-7065.	1.9	16
17	Synthesis of new carbohydrate-derived ketones as organocatalysts in the enantioselective epoxidation of arylalkenes. Part 2: Chiral ketones from sugars. Tetrahedron, 2011, 67, 364-372.	1.9	14
18	Alkenyl \hat{l}^2 -d-galactopyranoside derivatives as efficient chiral templates in stereoselective cyclopropanation and epoxidation reactions. Tetrahedron: Asymmetry, 2010, 21, 81-95.	1.8	13

#	Article	IF	CITATIONS
19	The extremely halophilic bacterium Salicola marasensis IC10 accumulates the compatible solute betaine. Systematic and Applied Microbiology, 2010, 33, 308-310.	2.8	9
20	Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields. BMC Microbiology, 2010, 10, 192.	3.3	44
21	Involvement of EupR, a response regulator of the NarL/FixJ family, in the control of the uptake of the compatible solutes ectoines by the halophilic bacterium Chromohalobacter salexigens. BMC Microbiology, 2010, 10, 256.	3.3	26
22	Synthesis of 2â€Amino glycal Derivatives and their Conversion into Highly Functionalised βâ€Enamino Ketones. European Journal of Organic Chemistry, 2010, 2010, 4253-4265.	2.4	2
23	Interplay between Iron Homeostasis and the Osmotic Stress Response in the Halophilic Bacterium <i>Chromohalobacter salexigens</i> . Applied and Environmental Microbiology, 2010, 76, 3575-3589.	3.1	49
24	Synthesis of New Chiral Ketones from <scp>D</scp> â€Glucose Derivatives and Their Use in the Enantioselective Epoxidation of Arylalkenes. European Journal of Organic Chemistry, 2009, 2009, 6018-6009.	2.4	3
25	The use of 1,2-O-isopropylidene-î±-d-xylofuranose as a chiral auxiliary in asymmetric cyclopropanation reactions. Tetrahedron: Asymmetry, 2009, 20, 1065-1072.	1.8	15
26	Stereoselective cyclopropanation of unsaturated acetals, using carbohydrates with d-gluco, l-rhamno and d-xylo configurations as chiral auxiliaries. Tetrahedron: Asymmetry, 2008, 19, 1720-1729.	1.8	15
27	Stereoselective epoxidation of alkenylidene acetals derived from carbohydrates with d-allo, d-altro, d-galacto, d-gluco and d-xylo configurations. Tetrahedron: Asymmetry, 2007, 18, 1850-1867.	1.8	15
28	Osmoprotection of Salmonella enterica serovar Typhimurium by $N\hat{I}^3$ -acetyldiaminobutyrate, the precursor of the compatible solute ectoine. Systematic and Applied Microbiology, 2006, 29, 626-633.	2.8	18
29	The ectD Gene, Which Is Involved in the Synthesis of the Compatible Solute Hydroxyectoine, Is Essential for Thermoprotection of the Halophilic Bacterium Chromohalobacter salexigens. Journal of Bacteriology, 2006, 188, 3774-3784.	2.2	133
30	Contribution of chemical changes in membrane lipids to the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens. Systematic and Applied Microbiology, 2005, 28, 571-581.	2.8	28
31	Complex regulation of the synthesis of the compatible solute ectoine in the halophilic bacterium Chromohalobacter salexigens DSM 3043T. Microbiology (United Kingdom), 2004, 150, 3051-3063.	1.8	112
32	Stereoselective synthesis of oxiranes as a source of isoserine analogues using d-glucosamine and d-glucose derivatives as chiral templates. Tetrahedron: Asymmetry, 2004, 15, 3617-3633.	1.8	13
33	Alkylating agents from sugars: Synthesis of chlorambucil derivatives carried by chiral glycosyl glycerols derived fromD-Glucosamine. Chirality, 2002, 14, 199-203.	2.6	17
34	Stereoselective synthesis of epoxyalkyl glycoside precursors of glycosyl glycerol analogues from alkenyl glycosides of N-acetyl-d-glucosamine derivatives. Tetrahedron: Asymmetry, 2002, 13, 2471-2483.	1.8	20
35	Stereoselective synthesis of oxiranes using oxazolidines derived from 2-amino-2-deoxy-d-allose as chiral auxiliaries. Tetrahedron: Asymmetry, 2001, 12, 3189-3203.	1.8	22
36	Stereoselective synthesis of oxazolidines from 2-amino-2-deoxy-d-allose derivatives and their reactivity with nucleophiles. Tetrahedron: Asymmetry, 2001, 12, 135-147.	1.8	12

#	Article	IF	CITATIONS
37	Glycosyl Glycerol Derivatives as Drug Carrier System. Stereoselective Synthesis of EpoxyalkylN-Acyl-Î ² -D-glucopyranosides and Their Reactivity with Nucleophiles. European Journal of Organic Chemistry, 2000, 2000, 3949-3956.	2.4	20
38	Alkylating agents from sugars. Stereoselective synthesis of 2,3-diaminoglucoses from 2-nitroalkenes, as intermediates in the synthesis of carriers of chlorambucil. Tetrahedron, 1999, 55, 9641-9650.	1.9	21
39	Alkylating agents from sugars. Alkyl hexopyranoside derivatives as carrier systems for chlorambucil. Carbohydrate Research, 1999, 316, 71-84.	2.3	28
40	Alkylating agents from sugars. Cyclophosphamides derived from 2-amino-2-deoxy-d-allose. Carbohydrate Research, 1998, 308, 57-62.	2.3	31
41	Isolation and Characterization of Salt-sensitive Mutants of the Moderate Halophile Halomonas elongata and Cloning of the Ectoine Synthesis Genes. Journal of Biological Chemistry, 1997, 272, 25794-25801.	3.4	96
42	A Facile Synthesis of Saturated 2-Nitrosugar Derivatives. Journal of Organic Chemistry, 1997, 62, 6608-6611.	3.2	16
43	Mass Spectra of N-Alkyl and N, N-Dialkylaminosugar Derivatives. Chemical Evidence for the Different Pathways of Fragmentation. Journal of Mass Spectrometry, 1996, 31, 493-499.	1.6	O
44	A general method for synthesis of alkyl 2-N-substituted and 2-N,N-disubstituted d-altrosamines. Carbohydrate Research, 1995, 279, C5-C8.	2.3	12