Vaibhav K Arghode

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/584282/publications.pdf

Version: 2024-02-01

27 papers

1,019 citations

567281 15 h-index 25 g-index

29 all docs

29 docs citations

times ranked

29

471 citing authors

#	Article	IF	CITATIONS
1	Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion. Applied Energy, 2010, 87, 1631-1640.	10.1	186
2	High intensity colorless distributed combustion for ultra low emissions and enhanced performance. Applied Energy, 2012, 92, 822-830.	10.1	126
3	Hydrogen addition effects in a confined swirl-stabilized methane-air flame. International Journal of Hydrogen Energy, 2009, 34, 1054-1062.	7.1	96
4	Development of high intensity CDC combustor for gas turbine engines. Applied Energy, 2011, 88, 963-973.	10.1	72
5	Investigation of forward flow distributed combustion for gas turbine application. Applied Energy, 2011, 88, 29-40.	10.1	67
6	Investigation of reverse flow distributed combustion for gas turbine application. Applied Energy, 2011, 88, 1096-1104.	10.1	60
7	Thermal Characteristics of Open and Contained Data Center Cold Aisle. Journal of Heat Transfer, 2013, 135, .	2.1	57
8	Fuel dilution and liquid fuel operational effects on ultra-high thermal intensity distributed combustor. Applied Energy, 2012, 95, 132-138.	10.1	53
9	Role of thermal intensity on operational characteristics of ultra-low emission colorless distributed combustion. Applied Energy, 2013, 111, 930-956.	10.1	51
10	Hydrogen addition effects on methane–air colorless distributed combustion flames. International Journal of Hydrogen Energy, 2011, 36, 6292-6302.	7.1	44
11	Low calorific value fuelled distributed combustion with swirl for gas turbine applications. Applied Energy, 2012, 98, 69-78.	10.1	44
12	Novel mixing for ultra-high thermal intensity distributed combustion. Applied Energy, 2013, 105, 327-334.	10.1	43
13	Airflow Management in a Contained Cold Aisle Using Active Fan Tiles for Energy Efficient Data-Center Operation. Heat Transfer Engineering, 2016, 37, 246-256.	1.9	26
14	Jet characteristics from a submerged combustion system. Applied Energy, 2012, 89, 246-253.	10.1	23
15	Combustion characteristics of a lean premixed LPG–air combustor. International Journal of Hydrogen Energy, 2009, 34, 1045-1053.	7.1	21
16	Transport dynamics of an ellipsoidal particle in free molecular gas flow regime. Physics of Fluids, 2019, 31, .	4.0	12
17	Modified Body Force Model for Air Flow Through Perforated Floor Tiles in Data Centers. Journal of Electronic Packaging, Transactions of the ASME, 2016, 138, .	1.8	10
18	Investigation of a reverse-cross flow combustor with varying fuel injection momentum. Thermal Science and Engineering Progress, 2019, 10, 232-244.	2.7	9

#	Article	IF	CITATIONS
19	Investigation of peripheral vortex reverse flow (PVRF) combustor for gas turbine engines. Energy, 2020, 193, 116766.	8.8	8
20	Correlations for aerodynamic coefficients for prolate spheroids in the free molecular regime. Computers and Fluids, 2021, 223, 104934.	2.5	3
21	CO modelling of premixed head-on quenching flame in the context of Large-Eddy Simulation. International Journal of Heat and Fluid Flow, 2022, 93, 108895.	2.4	3
22	Combustion Characteristics of a Reverse-Cross-Flow Combustor. Journal of the Energy Institute, 2022, , .	5.3	2
23	Body force model for simulating airflow through dynamically oscillating louvers. Science and Technology for the Built Environment, 2020, 26, 219-228.	1.7	1
24	Study of nickel-coated aluminum nanoparticles using molecular dynamic simulations and thermodynamic modeling. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	1
25	Experimental investigation of a Jet-A1 fuelled peripheral vortex reverse flow combustor. Thermal Science and Engineering Progress, 2021, 21, 100754.	2.7	1
26	Simplified Model for Directional Delivery of Air Through Louvers Used in Air-Conditioning Systems. Journal of the Institution of Engineers (India): Series C, 2021, 102, 427-437.	1.2	0
27	Investigation of Dual Color Angular Beam Scanning (DCABS) PIV system. Optics and Lasers in Engineering, 2022, 151, 106916.	3.8	0