Stéphanie Roualdes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5842201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Performance of plasma sputtered fuel cell electrodes with ultra-low Pt loadings. Electrochemistry Communications, 2009, 11, 859-861.	4.7	99
2	Mesoporous ZnFe ₂ O ₄ @TiO ₂ Nanofibers Prepared by Electrospinning Coupled to PECVD as Highly Performing Photocatalytic Materials. Journal of Physical Chemistry C, 2017, 121, 24669-24677.	3.1	88
3	New Fluorinated Polymers Bearing Pendant Phosphonic Acid Groups. Proton Conducting Membranes for Fuel Cell. Macromolecules, 2010, 43, 5269-5276.	4.8	83
4	Facile fabrication of NiTiO3/graphene nanocomposites for photocatalytic hydrogen generation. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365, 86-93.	3.9	74
5	BN/CdxTi(1-x)O(4-x)/2 nanofibers for enhanced photocatalytic hydrogen production under visible light. Applied Catalysis B: Environmental, 2019, 251, 76-86.	20.2	73
6	Atomic layer deposition of Pd nanoparticles on self-supported carbon-Ni/NiO-Pd nanofiber electrodes for electrochemical hydrogen and oxygen evolution reactions. Journal of Colloid and Interface Science, 2020, 569, 286-297.	9.4	68
7	Gas diffusion and sorption properties of polysiloxane membranes prepared by PECVD. Journal of Membrane Science, 2002, 198, 299-310.	8.2	58
8	Separation of H+/Cu2+ cations by electrodialysis using modified proton conducting membranes. Journal of Membrane Science, 2003, 216, 13-25.	8.2	55
9	Antibacterial properties of Ag–TiO ₂ composite sol–gel coatings. RSC Advances, 2015, 5, 59070-59081.	3.6	50
10	Enhancement of calcium copper titanium oxide photoelectrochemical performance using boron nitride nanosheets. Chemical Engineering Journal, 2020, 389, 124326.	12.7	48
11	Sulfonated polystyrene-type plasma-polymerized membranes for miniature direct methanol fuel cells. Journal of Power Sources, 2006, 158, 1270-1281.	7.8	47
12	Preparation of solid alkaline fuel cell binders based on fluorinated poly(diallyldimethylammonium) Tj ETQq0 0 0 rg of Polymer Science Part A, 2009, 47, 2043-2058.	BT /Overlo 2.3	ock 10 Tf 50 47
13	Coating porous membranes with a photocatalyst: Comparison of LbL self-assembly and plasma-enhanced CVD techniques. Journal of Membrane Science, 2016, 514, 340-349.	8.2	47
14	Coaxial nanofibers of nickel/gadolinium oxide/nickel oxide as highly effective electrocatalysts for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2021, 587, 457-466.	9.4	47
15	29Si NMR and Si2p XPS correlation in polysiloxane membranes prepared by plasma enhanced chemical vapor deposition. Separation and Purification Technology, 2001, 25, 391-397.	7.9	44
16	Simultaneous hydrogen and oxygen evolution reactions using free-standing nitrogen-doped-carbon–Co/CoO _{<i>x</i>} nanofiber electrodes decorated with palladium nanoparticles. Journal of Materials Chemistry A, 2021, 9, 17724-17739.	10.3	41
17	Solid polymer fuel cell synthesis by low pressure plasmas: a short review. EPJ Applied Physics, 2006, 34, 151-156.	0.7	41
18	Plasma-Polymerised Proton Conductive Membranes for a Miniaturised PEMFC. Fuel Cells, 2005, 5, 277-286.	2.4	40

2

STéPHANIE ROUALDES

#	Article	IF	CITATIONS
19	Surface investigation of plasma HMDSO membranes post-treated by CF4/Ar plasma. Applied Surface Science, 2002, 187, 326-338.	6.1	39
20	Gas separation properties of organosilicon plasma polymerized membranes. AICHE Journal, 1999, 45, 1566-1575.	3.6	38
21	Highly textured boron/nitrogen co-doped TiO2 with honeycomb structure showing enhanced visible-light photoelectrocatalytic activity. Applied Surface Science, 2020, 505, 144419.	6.1	38
22	Functionalization of MCM-41 with titanium oxynitride deposited via PECVD for enhanced removal of methylene blue. Journal of Molecular Liquids, 2019, 274, 505-515.	4.9	37
23	Design of Ni/NiO–TiO2/rGO nanocomposites on carbon cloth conductors via PECVD for electrocatalytic water splitting. International Journal of Hydrogen Energy, 2020, 45, 32000-32011.	7.1	36
24	Membranes produced by plasma enhanced chemical vapor deposition technique for low temperature fuel cell applications. Journal of Power Sources, 2010, 195, 232-238.	7.8	34
25	Segregation of copper oxide on calcium copper titanate surface induced by Graphene Oxide for Water splitting applications. Applied Surface Science, 2020, 516, 146051.	6.1	31
26	Plasma-grafted PVDF polymers as anion exchange membranes for the electrotransport of Cr(VI). Desalination, 2002, 146, 273-278.	8.2	22
27	lonâ€Exchange Plasma Membranes for Fuel Cells on a Micrometer Scale. Chemical Vapor Deposition, 2007, 13, 361-369.	1.3	22
28	Microporous Silica Membrane: Basic Principles and Recent Advances. Membrane Science and Technology, 2008, 13, 33-79.	0.5	22
29	Water Transport Properties of Plasma-Modified Commercial Anion-Exchange Membrane for Solid Alkaline Fuel Cells. Journal of Physical Chemistry C, 2012, 116, 8510-8522.	3.1	22
30	Organic/inorganic thin films deposited from diethoxydimethylsilane by plasma enhanced chemical vapor deposition. Journal of Non-Crystalline Solids, 1999, 248, 235-246.	3.1	21
31	Optimization of N-doped TiO2 multifunctional thin layers by low frequency PECVD process. Journal of the European Ceramic Society, 2017, 37, 5289-5303.	5.7	20
32	TiO2 nanotree films for the production of green H2 by solar water splitting: From microstructural and optical characteristics to the photocatalytic properties. Applied Surface Science, 2019, 494, 1127-1137.	6.1	20
33	New photocatalytic contactors obtained by PECVD deposition of TiO 2 thin layers on the surface of macroporous supports. European Physical Journal: Special Topics, 2015, 224, 1871-1882.	2.6	19
34	Nanocrystalline TiO2 thin film prepared by low-temperature plasma-enhanced chemical vapor deposition for photocatalytic applications. Thin Solid Films, 2015, 589, 770-777.	1.8	18
35	Superior efficiency of BN/Ce2O3/TiO2 nanofibers for photocatalytic hydrogen generation reactions. Applied Surface Science, 2022, 594, 153438.	6.1	18
36	Mass density determination of thin organosilicon films by X-ray reflectometry. Applied Surface Science, 2001, 173, 115-121.	6.1	16

#	Article	IF	CITATIONS
37	Plasma-polymerized thin films as new membranes for miniature solid alkaline fuel cells. Desalination, 2006, 199, 286-288.	8.2	16
38	Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells. Membranes, 2012, 2, 529-552.	3.0	14
39	Comparative performance of various plasma polysiloxane films for the pervaporative recovery of organics from aqueous streams. Journal of Membrane Science, 2003, 211, 113-126.	8.2	13
40	PECVD process for the preparation of proton conducting membranes for micro fuel cells. Impedance probe measurements and material characterizations. EPJ Applied Physics, 2008, 42, 9-15.	0.7	13
41	Hybrid plasma polymerized membranes from organosilicon precursors for gas separation. European Physical Journal Special Topics, 1999, 09, Pr8-1147-Pr8-1154.	0.2	11
42	In-Situ Mass Spectrometry Analyses of the Fragmentation of Linear and Cyclic Siloxanes in a Glow Discharge Compared with Ex-Situ FTIR Analyses of the Deposits. Chemical Vapor Deposition, 2002, 8, 155.	1.3	11
43	Plasma-polymerized phosphonic acid-based membranes for fuel cell. Journal of Membrane Science, 2014, 461, 1-9.	8.2	10
44	Comparative study of bulk and surface compositions of plasma polymerized organosilicon thin films. Surfaces and Interfaces, 2021, 25, 101256.	3.0	10
45	Optimization of the molecular sieving properties of amorphous SiCXNY:H hydrogen selective membranes prepared by PECVD. European Physical Journal: Special Topics, 2015, 224, 1935-1943.	2.6	9
46	Microwave PECVD Silicon Carbonitride Thin Films: A FTIR and Ellipsoporosimetry Study. Plasma Processes and Polymers, 2016, 13, 258-265.	3.0	9
47	Phosphonic acid-based membranes as proton conductors prepared by a pulsed plasma enhanced chemical vapor deposition technique. Thin Solid Films, 2018, 660, 506-515.	1.8	8
48	Effect of plasma power on the semiconducting behavior of low-frequency PECVD TiO2 and nitrogen-doped TiO2 anodic thin coatings: photo-electrochemical studies in a single compartment cell for hydrogen generation by solar water splitting. Journal of Applied Electrochemistry, 2019, 49, 135-150.	2.9	8
49	Experimental design and modelling in the investigation of PECVD parameters effects on the structural and gas transport properties of plasma polysiloxane membranes. Journal of Membrane Science, 2004, 230, 39-48.	8.2	7
50	Chemical Investigation on Various Aromatic Compounds Polymerization in Low Pressure Helium Plasma. Plasma Chemistry and Plasma Processing, 2014, 34, 1219-1232.	2.4	7
51	Vibrational frequencies of hydrogenated silicon carbonitride: A DFT study. Surface and Coatings Technology, 2017, 325, 437-444.	4.8	6
52	Xâ€Ray Reflectometry Characterization of Plasma Polymer Films Synthesized from Triallylamine: Density and Swelling in Water. Plasma Processes and Polymers, 2013, 10, 517-525.	3.0	4
53	Plasma-treated phosphonic acid-based membranes for fuel cell. International Journal of Hydrogen Energy, 2016, 41, 15593-15604.	7.1	4
54	Plasma processes for membranes modification or manufacture. Annales De Chimie: Science Des Materiaux, 2007, 32, 141-158.	0.4	4

#	Article	IF	CITATIONS
55	Solid Polymer Fuel Cell synthesis by low pressure plasmas: a short review. EPJ Applied Physics, 2008, 43, 137-137.	0.7	3
56	An application of carbon nanotubes for integrated circuit interconnects. , 2008, , .		3
57	Sorption and permeation of water through Plasma Enhanced Chemical Vapour Deposited phosphonic acid-based membranes. Thin Solid Films, 2020, 700, 137918.	1.8	2
58	Modelling of gas permeability for membranes prepared by PECVD. Journal of Membrane Science, 2005, 262, 42-48.	8.2	1
59	Original Polystyrene Nanoballs Grown by Plasma Polymerization. IEEE Transactions on Plasma Science, 2011, 39, 2778-2779.	1.3	1
60	XPS and XPS valence band characterizations of amorphous or polymeric silicon based thin films prepared by PACVD from organosilicon monomers. European Physical Journal Special Topics, 1999, 09, Pr8-1059-Pr8-1068.	0.2	0
61	[P1.035] New Copolymers for Solid Alkaline Fuel Cell Membranes. Procedia Engineering, 2012, 44, 753-755.	1.2	0
62	Innovative Plasma Polymerized Membranes based on Phosphonic Acid Groups for Fuel Cell. Procedia Engineering, 2012, 44, 701-703.	1.2	0
63	Plasma Polymerization. , 2015, , 1-3.		0
64	Plasma Polymerized Membrane. , 2015, , 1-2.		0