Shan Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/584215/publications.pdf Version: 2024-02-01

SHAN DEN

#	Article	IF	CITATIONS
1	Time-resolved <i>in situ</i> DRIFTS study on NH ₃ -SCR of NO on a CeO ₂ /TiO ₂ catalyst. Catalysis Science and Technology, 2022, 12, 1245-1256.	4.1	43
2	Kinetic analysis and modeling of maize straw hydrochar combustion using a multi-Gaussian-distributed activation energy model. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 464-472.	4.9	15
3	Structural and gasification kinetic studies on co-pyrolysis chars of coal and biomass. Energy Advances, 2022, 1, 225-237.	3.3	0
4	Crystallization behaviors and properties of Ti-bearing blast furnace slag-based glass ceramics with varying CaO/SiO2 mass ratio. Journal of the Australian Ceramic Society, 2022, 58, 597-605.	1.9	3
5	Photocatalytic degradation of methyl orange by Ca doped β-In2S3 with varying Ca concentration. Research on Chemical Intermediates, 2022, 48, 1813-1829.	2.7	9
6	A density functional theory study on the adsorption reaction mechanism of double CO2 on the surface of graphene defects. Journal of Molecular Modeling, 2022, 28, 118.	1.8	5
7	The Effects of FeO and Fe2O3 on the Structure and Properties of Aluminosilicate System: A Molecular Dynamics Study. Jom, 2022, 74, 4162-4173.	1.9	2
8	Different lead species deactivation on Mn-Ce activated carbon supported catalyst for low-temperature SCR of NO with NH3: Comparison of PbCl2, Pb (NO3)2 and PbSO4. Journal of Colloid and Interface Science, 2022, 622, 549-561.	9.4	25
9	Catalytic performance of CeO2-NPs and α-MnO2 mixed oxides catalysts for low-temperature NH3-SCR of NO. Journal of the Energy Institute, 2022, 103, 54-59.	5.3	9
10	Effects of different exposed crystal surfaces of CeO ₂ loaded on an MnO ₂ /X catalyst for the NH ₃ -SCR reaction. CrystEngComm, 2022, 24, 4991-5002.	2.6	2
11	Revealing M (M = Cu, Co and Zr) oxides doping effects on anti-PbCl2 poisoning over Mn-Ce/AC catalysts in low-temperature NH3-SCR reaction. Applied Catalysis A: General, 2022, 643, 118749.	4.3	18
12	New Insights into the Traditional Charge Compensation Theory: Amphoteric Behavior of TiO ₂ under the Guidance of Supply–Demand Relationship. ACS Omega, 2022, 7, 21225-21232.	3.5	3
13	<i>In situ</i> observations of isothermal cuspidine crystallization in molten mould fluxes with varying basicity. Ironmaking and Steelmaking, 2021, 48, 149-154.	2.1	2
14	Effects of PbO poisoning on Ce–Mn/AC catalyst for low-temperature selective catalytic reduction of NO with NH3. Journal of Iron and Steel Research International, 2021, 28, 133-139.	2.8	24
15	Heterojunction interface of zinc oxide and zinc sulfide promoting reactive molecules activation and carrier separation toward efficient photocatalysis. Journal of Colloid and Interface Science, 2021, 588, 826-837.	9.4	32
16	Insight into N2O Formation Over Different Crystal Phases of MnO2 During Low-Temperature NH3–SCR of NO. Catalysis Letters, 2021, 151, 2964-2971.	2.6	38
17	Isothermal Carbothermal Reduction of FeTiO3 Doped with MgO. Jom, 2021, 73, 1328.	1.9	17
18	NH3 treatment of CeO2 nanorods catalyst for improving NH3-SCR of NO. Journal of the Energy Institute, 2021, 98, 199-205.	5.3	25

Shan Ren

#	Article	IF	CITATIONS
19	Nb2O5-modified Mn-Ce/AC catalyst with high ZnCl2 and SO2 tolerance for low-temperature NH3-SCR of NO. Journal of Environmental Chemical Engineering, 2021, 9, 106323.	6.7	33
20	Promotional effects of nitrogen doping on catalytic performance over manganese-containing semi-coke catalysts for the NH3-SCR at low temperatures. Journal of Hazardous Materials, 2020, 387, 121704.	12.4	65
21	Transferability of interatomic potentials with insights into the structure–property relationship of SiO ₂ –CaO–MgO–Al ₂ O ₃ melts. Molecular Simulation, 2020, 46, 289-299.	2.0	6
22	Deactivation Effect of CaO on Mn-Ce/AC Catalyst for SCR of NO with NH3 at Low Temperature. Catalysts, 2020, 10, 873.	3.5	11
23	Poisoning Effect Comparison of ZnCl ₂ and ZnSO ₄ on Mn e/AC Catalyst for Lowâ€Temperature SCR of NO. ChemistrySelect, 2020, 5, 9226-9234.	1.5	19
24	Ti3O5 and Al2TiO5 Crystals Flotation Characteristics from Ti-bearing Blast Furnace Slag: A Density Functional Theory and Experimental Study. Crystals, 2020, 10, 838.	2.2	4
25	Comparative Studies of Effects of Vapor- and Liquid-Phase As ₂ O ₃ on Catalytic Behaviors of V ₂ O ₅ –WO ₃ /TiO ₂ Catalysts for NH ₃ -SCR. ACS Omega, 2020, 5, 24195-24203.	3.5	15
26	Effect of MgO and K2O on High-Al Silicon–Manganese Alloy Slag Viscosity and Structure. Minerals (Basel, Switzerland), 2020, 10, 810.	2.0	12
27	Influences of Ash-Existing Environments and Coal Structures on CO2 Gasification Characteristics of Tri-High Coal. Processes, 2020, 8, 1367.	2.8	3
28	Experimental Study on Strengthening Carbothermic Reduction of Vanadium-Titanium-Magnetite by Adding CaF2. Minerals (Basel, Switzerland), 2020, 10, 219.	2.0	11
29	Study on the Structure and Properties of High-Calcium Coal Ash in the High-Temperature Zone of a Blast Furnace: A Molecular Dynamics Simulation Investigation. Jom, 2020, 72, 2713-2720.	1.9	2
30	Kinetic analysis of CO2 gasification of biochar and anthracite based on integral isoconversional nonlinear method. High Temperature Materials and Processes, 2020, 39, 527-538.	1.4	3
31	Low-temperature flue gas denitration with transition metal oxides supported on biomass char. Journal of the Energy Institute, 2019, 92, 1158-1166.	5.3	30
32	Atomic-Scale Understanding about Coke Carbon Structural Evolution by Experimental Characterization and ReaxFF Molecular Dynamics. Energy & Fuels, 2019, 33, 10941-10952.	5.1	18
33	Experiment and expectation: Co-combustion behavior of anthracite and biomass char. Bioresource Technology, 2019, 280, 412-420.	9.6	43
34	New insights into the deactivation mechanism of V ₂ O ₅ -WO ₃ /TiO ₂ catalyst during selective catalytic reduction of NO with NH ₃ : synergies between arsenic and potassium species. RSC Advances 2019 9 37724-37732	3.6	19
35	Low-temperature SCR of NO with NH3 over biomass char supported highly dispersed Mn Ce mixed oxides. Journal of the Energy Institute, 2019, 92, 883-891.	5.3	48
36	Role of cerium in improving NO reduction with NH 3 over Mn–Ce/ASC catalyst in low-temperature flue gas. Chemical Engineering Research and Design, 2018, 133, 1-10.	5.6	63

Shan Ren

#	Article	IF	CITATIONS
37	Physicochemical properties of pine-derived bio-chars modified by metal oxides and their performance in the removal of NO. Journal of the Energy Institute, 2018, 91, 467-472.	5.3	19
38	Promotional effect of Ce on the SCR of NO with NH3 at low temperature over MnO x supported by nitric acid-modified activated carbon. Research on Chemical Intermediates, 2018, 44, 1729-1744.	2.7	43
39	Effect of pyrolysis temperature on pine sawdust chars and their gasification reactivity mechanism with CO ₂ . Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2256.	1.5	24
40	Poisoning effects of KCl and As2O3 on selective catalytic reduction of NO with NH3 over Mn-Ce/AC catalysts at low temperature. Chemical Engineering Journal, 2018, 351, 540-547.	12.7	55
41	Effect of B2O3 on Slag-Metal Reaction between CaO-Al2O3-Based Mold Flux and High Aluminum Steel. High Temperature Materials and Processes, 2018, 37, 981-985.	1.4	9
42	Sintering flue gas desulfurization with different carbon materials modified by microwave irradiation. Journal of Iron and Steel Research International, 2017, 24, 979-984.	2.8	15
43	Selection of carbon materials and modification methods in low-temperature sintering flue gas denitrification. Chemical Engineering Research and Design, 2017, 126, 278-285.	5.6	50
44	Effect of compositions and additives content on crystallization behavior of Ti-rich phase from Ti-bearing blast furnace slag. Metallurgical Research and Technology, 2017, 114, 415.	0.7	4
45	Effect of Al ₂ O ₃ , MgO, and CaO/SiO ₂ on Viscosity of High Alumina Blast Furnace Slag. Steel Research International, 2016, 87, 241-249.	1.8	55
46	Thermal Behavior and Kinetics of Raw/Pyrolytic Wood and Coal Blends during Co-combustion Process. Journal of Iron and Steel Research International, 2016, 23, 917-923.	2.8	9
47	Precipitation behavior of perovskite and anosovite crystals from high Ti-bearing blast furnace slag with small amount of B ₂ O ₃ . CrystEngComm, 2016, 18, 1393-1402.	2.6	33
48	Effect of Nozzle Blockage on Circulation Flow Rate in Up-Snorkel during the RH Degasser Process. Steel Research International, 2016, 87, 136-145.	1.8	23
49	Combustion Characteristics and Kinetics of Anthracite Blending with Pine Sawdust. Journal of Iron and Steel Research International, 2015, 22, 812-817.	2.8	17
50	Zinc Accumulation and Behavior in Tuyere Coke. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 1581-1588.	2.1	28
51	Influence of B2O3 on Viscosity of High Ti-bearing Blast Furnace Slag. ISIJ International, 2012, 52, 984-991.	1.4	61