
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5842135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	"Trifecta―in Partial Nephrectomy. Journal of Urology, 2013, 189, 36-42.	0.2	322
2	Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World Journal of Urology, 2016, 34, 337-345.	1.2	258
3	Face, Content and Construct Validity of a Novel Robotic Surgery Simulator. Journal of Urology, 2011, 186, 1019-1025.	0.2	194
4	Automated Performance Metrics and Machine Learning Algorithms to Measure Surgeon Performance and Anticipate Clinical Outcomes in Robotic Surgery. JAMA Surgery, 2018, 153, 770.	2.2	126
5	Concurrent and Predictive Validation of a Novel Robotic Surgery Simulator: A Prospective, Randomized Study. Journal of Urology, 2012, 187, 630-637.	0.2	114
6	Utilizing Machine Learning and Automated Performance Metrics to Evaluate Robot-Assisted Radical Prostatectomy Performance and Predict Outcomes. Journal of Endourology, 2018, 32, 438-444.	1.1	113
7	Predictive Value of Magnetic Resonance Imaging Determined Tumor Contact Length for Extracapsular Extension of Prostate Cancer. Journal of Urology, 2015, 193, 466-472.	0.2	102
8	Current status of artificial intelligence applications in urology and their potential to influence clinical practice. BJU International, 2019, 124, 567-577.	1.3	97
9	External validation of Global Evaluative Assessment of Robotic Skills (GEARS). Surgical Endoscopy and Other Interventional Techniques, 2015, 29, 3261-3266.	1.3	94
10	Comparative assessment of three standardized robotic surgery training methods. BJU International, 2013, 112, 864-871.	1.3	93
11	Development and Validation of Objective Performance Metrics for Robot-Assisted Radical Prostatectomy: A Pilot Study. Journal of Urology, 2018, 199, 296-304.	0.2	92
12	A deepâ€learning model using automated performance metrics and clinical features to predict urinary continence recovery after robotâ€assisted radical prostatectomy. BJU International, 2019, 124, 487-495.	1.3	90
13	Telementoring and Telesurgery for Minimally Invasive Procedures. Journal of Urology, 2018, 199, 355-369.	0.2	85
14	Robotic Unclamped "Minimal-margin―Partial Nephrectomy: Ongoing Refinement of the Anatomic Zero-ischemia Concept. European Urology, 2015, 68, 705-712.	0.9	80
15	Face, content, construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool. BJU International, 2014, 113, 836-842.	1.3	70
16	Objective Assessment of Robotic Surgical Technical Skill: A Systematic Review. Journal of Urology, 2019, 201, 461-469.	0.2	68
17	Use of Automated Performance Metrics to Measure Surgeon Performance during Robotic Vesicourethral Anastomosis and Methodical Development of a Training Tutorial. Journal of Urology, 2018, 200, 895-902.	0.2	51
18	Development and Validation of a Novel Robotic Procedure Specific Simulation Platform: Partial Nephrectomy. Journal of Urology, 2015, 194, 520-526.	0.2	49

#	Article	IF	CITATIONS
19	A novel interface for the telementoring of robotic surgery. BJU International, 2015, 116, 302-308.	1.3	47
20	Robotic Transrectal Ultrasonography During Robot-Assisted Radical Prostatectomy. European Urology, 2012, 62, 341-348.	0.9	46
21	Experts vs superâ€experts: differences in automated performance metrics and clinical outcomes for robotâ€assisted radical prostatectomy. BJU International, 2019, 123, 861-868.	1.3	45
22	Validation of a novel roboticâ€assisted partial nephrectomy surgical training model. BJU International, 2012, 110, 870-874.	1.3	39
23	Deep learning-based computer vision to recognize and classify suturing gestures in robot-assisted surgery. Surgery, 2021, 169, 1240-1244.	1.0	38
24	The Importance of Technical and Non-technical Skills in Robotic Surgery Training. European Urology Focus, 2018, 4, 674-676.	1.6	37
25	Proctors exploit three-dimensional ghost tools during clinical-like training scenarios: a preliminary study. World Journal of Urology, 2017, 35, 957-965.	1.2	30
26	Using objective robotic automated performance metrics and task-evoked pupillary response to distinguish surgeon expertise. World Journal of Urology, 2020, 38, 1599-1605.	1.2	24
27	Effect of surgeon experience and bony pelvic dimensions on surgical performance and patient outcomes in robotâ€assisted radical prostatectomy. BJU International, 2019, 124, 828-835.	1.3	23
28	Standardized Reporting of Machine Learning Applications in Urology: The STREAM-URO Framework. European Urology Focus, 2021, 7, 672-682.	1.6	23
29	Beyond 2D telestration: an evaluation of novel proctoring tools for robot-assisted minimally invasive surgery. Journal of Robotic Surgery, 2016, 10, 103-109.	1.0	22
30	Structured learning for robotic surgery utilizing a proficiency score: a pilot study. World Journal of Urology, 2017, 35, 27-34.	1.2	21
31	Machine learning analyses of automated performance metrics during granular sub-stitch phases predict surgeon experience. Surgery, 2021, 169, 1245-1249.	1.0	19
32	Survival Analysis Using Surgeon Skill Metrics and Patient Factors to Predict Urinary Continence Recovery After Robot-assisted Radical Prostatectomy. European Urology Focus, 2022, 8, 623-630.	1.6	19
33	Multiâ€institutional validation of a perfused robotâ€assisted partial nephrectomy procedural simulation platform utilizing clinically relevant objective metrics of simulators (CROMS). BJU International, 2021, 127, 645-653.	1.3	18
34	Novel training methods for robotic surgery. Indian Journal of Urology, 2014, 30, 333.	0.2	17
35	Machine learning in the optimization of robotics in the operative field. Current Opinion in Urology, 2020, 30, 808-816.	0.9	16
36	Innovations in Urologic Surgical Training. Current Urology Reports, 2021, 22, 26.	1.0	16

#	Article	IF	CITATIONS
37	Multi-Institutional Validation of Fundamental Inanimate Robotic Skills Tasks. Journal of Urology, 2015, 194, 1751-1756.	0.2	15
38	Percutaneous radiofrequency ablation of virtual tumours in canine kidney using Global Positioning Systemâ€like technology. BJU International, 2012, 109, 1398-1403.	1.3	14
39	Surgeon Automated Performance Metrics as Predictors of Early Urinary Continence Recovery After Robotic Radical Prostatectomy—A Prospective Bi-institutional Study. European Urology Open Science, 2021, 27, 65-72.	0.2	14
40	Can machineâ€learning algorithms replace conventional statistics?. BJU International, 2019, 123, 1-1.	1.3	13
41	Comparison of clinical outcomes and automated performance metrics in robot-assisted radical prostatectomy with and without trainee involvement. World Journal of Urology, 2020, 38, 1615-1621.	1.2	13
42	Virtual Reality <i>vs</i> Dry Laboratory Models: Comparing Automated Performance Metrics and Cognitive Workload During Robotic Simulation Training. Journal of Endourology, 2021, 35, 1571-1576.	1.1	12
43	Deep Learning to Automate Technical Skills Assessment in Robotic Surgery. JAMA Surgery, 2021, 156, 1059.	2.2	11
44	Does eliminating global renal ischemia during partial nephrectomy improve functional outcomes?. Current Opinion in Urology, 2013, 23, 112-117.	0.9	10
45	Comparative Effectiveness and Tolerability of Transperineal MRI-Targeted Prostate Biopsy under Local versus Sedation. Urology, 2021, 155, 33-38.	0.5	10
46	Feasibility of expert and crowd-sourced review of intraoperative video for quality improvement of intracorporeal urinary diversion during robotic radical cystectomy. Canadian Urological Association Journal, 2017, 11, 331-6.	0.3	9
47	Artificial Intelligence Applications in Urology. Urologic Clinics of North America, 2022, 49, 65-117.	0.8	9
48	Executive summary of the artificial intelligence in surgery series. Surgery, 2022, 171, 1435-1439.	1.0	9
49	Robotic and robot-assisted skull base neurosurgery: systematic review of current applications and future directions. Neurosurgical Focus, 2022, 52, E15.	1.0	9
50	Tailored Feedback Based on Clinically Relevant Performance Metrics Expedites the Acquisition of Robotic Suturing Skills—An Unblinded Pilot Randomized Controlled Trial. Journal of Urology, 2022, 208, 414-424.	0.2	9
51	Crowdsourced versus expert evaluations of the vesico-urethral anastomosis in the robotic radical prostatectomy: is one superior at discriminating differences in automated performance metrics?. Journal of Robotic Surgery, 2018, 12, 705-711.	1.0	8
52	Use of surgical video–based automated performance metrics to predict blood loss and success of simulated vascular injury control in neurosurgery: a pilot study. Journal of Neurosurgery, 2021, , 1-10.	0.9	8
53	How the use of the artificial intelligence could improve surgical skills in urology: state of the art and future perspectives. Current Opinion in Urology, 2021, 31, 378-384.	0.9	7
54	Efficiency and Accuracy of Robotic Surgical Performance Decayed Among Urologists During COVID-19 Shutdown. Journal of Endourology, 2021, 35, 888-890.	1.1	7

#	Article	IF	CITATIONS
55	Artificial Intelligence Will (MAY) Make Doctors Expendable (IN GOOD WAYS): Pro. European Urology Focus, 2021, 7, 683-684.	1.6	7
56	Road to automating robotic suturing skills assessment: Battling mislabeling of the ground truth. Surgery, 2022, 171, 915-919.	1.0	7
57	A Novel Dissection Gesture Classification to Characterize Robotic Dissection Technique for Renal Hilar Dissection. Journal of Urology, 2021, 205, 271-275.	0.2	6
58	MP23-18 INTER-HOSPITAL TELEMENTORING FOR ROBOTIC SURGERY. Journal of Urology, 2016, 195, .	0.2	4
59	The Relationship Between Technical Skills, Cognitive Workload, and Errors During Robotic Surgical Exercises. Journal of Endourology, 2022, 36, 712-720.	1.1	4
60	PD6-07 AUGMENTED REALITY VIDEO SIMULATION FOR ROBOTIC PARTIAL NEPHRECTOMY SURGERY TRAINING $\hat{a} \in$ THE NEXT GENERATION. Journal of Urology, 2014, 191, .	" 0.2	2
61	A better way to predict lymph node involvement using machineâ€learning?. BJU International, 2019, 124, 901-902.	1.3	2
62	Estimating the time of onset of testicular torsion using ultrasonography in an experimental rat model. Ultrasonography, 2020, 39, 152-158.	1.0	2
63	Technical Skill Impacts the Success of Sequential Robotic Suturing Substeps. Journal of Endourology, 2022, 36, 273-278.	1.1	2
64	Machine Learning to Delineate Surgeon and Clinical Factors That Anticipate Positive Surgical Margins After Robot-Assisted Radical Prostatectomy. Journal of Endourology, 2022, 36, 1192-1198.	1.1	2
65	Impact of Virtual Reality Simulator in Training of Robotic Surgery. , 2018, , 183-202.		1
66	Telementoring for Minimally Invasive Surgery. , 2021, , 361-378.		1
67	Editorial Comment. Journal of Urology, 2015, 194, 1105-1105.	0.2	0
68	Pillars to improve patient outcomes: training and assessment methods for surgery. World Journal of Urology, 2020, 38, 1591-1593.	1.2	0
69	Reply to Nikolaos Grivas, Nikolaos Kalampokis, and Henk van der Poel's Letter to the Editor re: Loc Trinh, Samuel Mingo, Erik B. Vanstrum, et al. Survival Analysis Using Surgeon Skill Metrics and Patient Factors to Predict Urinary Continence Recovery After Robot-assisted Radical Prostatectomy. Eur Urol Focus. In press. https://doi.org/10.1016/i.euf.2021.04.001. European Urology Focus. 2021	1.6	0
70	Laparoendoscopic Single-Site (LESS) Surgery and Robotic Laparoendoscopic Single-Site (R-LESS) Surgery in Urology: Adult and Pediatric Applications. , 0, , 237-244.		0
71	Fast But Not Furious: Improve Your Surgical Skills for the Race Against Time During Robot-Assisted Partial Nephrectomy Using a Validated Perfused Training Model. Videourology (New Rochelle, N Y), 2015, 29, .	0.1	0
72	Reply by Authors. Journal of Urology, 2022, , 101097JU0000000000000269103.	0.2	0