Matthew P Harris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5842040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zebrafish eda and edar Mutants Reveal Conserved and Ancestral Roles of Ectodysplasin Signaling in Vertebrates. PLoS Genetics, 2008, 4, e1000206.	3.5	186
2	Bioelectric Signaling Regulates Size in Zebrafish Fins. PLoS Genetics, 2014, 10, e1004080.	3.5	148
3	Molecular evidence for an activator-inhibitor mechanism in development of embryonic feather branching. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11734-11739.	7.1	144
4	Shh-Bmp2 signaling module and the evolutionary origin and diversification of feathers. The Journal of Experimental Zoology, 2002, 294, 160-176.	1.4	132
5	Modulation of Fgfr1a Signaling in Zebrafish Reveals a Genetic Basis for the Aggression–Boldness Syndrome. Journal of Neuroscience, 2011, 31, 13796-13807.	3.6	130
6	The Development of Archosaurian First-Generation Teeth in a Chicken Mutant. Current Biology, 2006, 16, 371-377.	3.9	122
7	Duplication of fgfr1 Permits Fgf Signaling to Serve as a Target for Selection during Domestication. Current Biology, 2009, 19, 1642-1647.	3.9	110
8	Katanin p80 Regulates Human Cortical Development by Limiting Centriole and Cilia Number. Neuron, 2014, 84, 1240-1257.	8.1	89
9	Efficient Mapping and Cloning of Mutations in Zebrafish by Low-Coverage Whole-Genome Sequencing. Genetics, 2012, 190, 1017-1024.	2.9	77
10	Zebrafish type I collagen mutants faithfully recapitulate human type I collagenopathies. Proceedings of the United States of America, 2018, 115, E8037-E8046.	7.1	77
11	Bioelectric signaling as a unique regulator of development and regeneration. Development (Cambridge), 2021, 148, .	2.5	63
12	Development of an evolutionarily novel structure: Fibroblast growth factor expression in the carapacial ridge of turtle embryos. The Journal of Experimental Zoology, 2001, 291, 274-281.	1.4	62
13	The FaceBase Consortium: A comprehensive resource for craniofacial researchers. Development (Cambridge), 2016, 143, 2677-88.	2.5	62
14	Genetic Screen for Postembryonic Development in the Zebrafish (<i>Danio rerio</i>): Dominant Mutations Affecting Adult Form. Genetics, 2017, 207, 609-623.	2.9	58
15	SCO-Spondin Defects and Neuroinflammation Are Conserved Mechanisms Driving Spinal Deformity across Genetic Models of Idiopathic Scoliosis. Current Biology, 2020, 30, 2363-2373.e6.	3.9	56
16	Zebrafish: An Emerging Model for Orthopedic Research. Journal of Orthopaedic Research, 2020, 38, 925-936.	2.3	52
17	Constitutive Activation of Sonic Hedgehog Signaling in the Chicken Mutant talpid2: Shh-Independent Outgrowth and Polarizing Activity. Developmental Biology, 1999, 212, 137-149.	2.0	51
18	Historical contingency shapes adaptive radiation in Antarctic fishes. Nature Ecology and Evolution, 2019, 3, 1102-1109.	7.8	50

MATTHEW P HARRIS

#	Article	IF	CITATIONS
19	The bowfin genome illuminates the developmental evolution of ray-finned fishes. Nature Genetics, 2021, 53, 1373-1384.	21.4	48
20	Bioelectric-calcineurin signaling module regulates allometric growth and size of the zebrafish fin. Scientific Reports, 2018, 8, 10391.	3.3	42
21	Utility of quantitative micro-computed tomographic analysis in zebrafish to define gene function during skeletogenesis. Bone, 2017, 101, 162-171.	2.9	40
22	Integrated K+ channel and K+Cl- cotransporter functions are required for the coordination of size and proportion during development. Developmental Biology, 2019, 456, 164-178.	2.0	36
23	Latent developmental potential to form limb-like skeletal structures in zebrafish. Cell, 2021, 184, 899-911.e13.	28.9	36
24	Parallelism and Epistasis in Skeletal Evolution Identified through Use of Phylogenomic Mapping Strategies. Molecular Biology and Evolution, 2016, 33, 162-173.	8.9	32
25	Perspectives for identification of mutations in the zebrafish: Making use of next-generation sequencing technologies for forward genetic approaches. Methods, 2013, 62, 185-196.	3.8	28
26	Enhancing the Efficiency of <i>N</i> -Ethyl- <i>N</i> -Nitrosourea–Induced Mutagenesis in the Zebrafish. Zebrafish, 2011, 8, 119-123.	1.1	26
27	FaceBase 3: analytical tools and FAIR resources for craniofacial and dental research. Development (Cambridge), 2020, 147, .	2.5	25
28	Unique and non-redundant function of <i>csf1r</i> paralogues in regulation and evolution of post-embryonic development of the zebrafish. Development (Cambridge), 2020, 147, .	2.5	23
29	Conserved but flexible modularity in the zebrafish skull: implications for craniofacial evolvability. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172671.	2.6	22
30	Notochordal Signals Establish Phylogenetic Identity of the Teleost Spine. Current Biology, 2020, 30, 2805-2814.e3.	3.9	17
31	Modulation of bioelectric cues in the evolution of flying fishes. Current Biology, 2021, 31, 5052-5061.e8.	3.9	16
32	Developmental constraint shaped genome evolution and erythrocyte loss in Antarctic fishes following paleoclimate change. PLoS Genetics, 2020, 16, e1009173.	3.5	14
33	Regulation of human cerebral cortical development by EXOC7 and EXOC8, components of the exocyst complex, and roles in neural progenitor cell proliferation and survival. Genetics in Medicine, 2020, 22, 1040-1050.	2.4	13
34	Cyclin-dependent kinase 21 is a novel regulator of proliferation and meiosis in the male germline of zebrafish. Reproduction, 2019, 157, 383-398.	2.6	13
35	Through veiled mirrors: Fish fins giving insight into size regulation. Wiley Interdisciplinary Reviews: Developmental Biology, 2021, 10, e381.	5.9	12
36	Identification of Mutations in Zebrafish Using Nextâ€Generation Sequencing. Current Protocols in Molecular Biology, 2013, 104, 7.13.1-7.13.33.	2.9	8

MATTHEW P HARRIS

#	Article	IF	CITATIONS
37	Footprints in the Sand: Deep Taxonomic Comparisons in Vertebrate Genomics to Unveil the Genetic Programs of Human Longevity. Frontiers in Genetics, 2021, 12, 678073.	2.3	8
38	Patterning the spine. ELife, 2018, 7, .	6.0	7
39	Synergistic roles of Wnt modulators R-spondin2 and R-spondin3 in craniofacial morphogenesis and dental development. Scientific Reports, 2021, 11, 5871.	3.3	6
40	celsr1a is essential for tissue homeostasis and onset of aging phenotypes in the zebrafish. ELife, 2020, 9, .	6.0	5
41	Atavisms in the avian hindlimb and early developmental polarity of the limb. Developmental Dynamics, 2021, 250, 1358-1367.	1.8	4
42	Refining Convergent Rate Analysis with Topology in Mammalian Longevity and Marine Transitions. Molecular Biology and Evolution, 2021, 38, 5190-5203.	8.9	4
43	Out of the Mouth of Minnows. Developmental Cell, 2015, 35, 263-264.	7.0	0
44	Finding the pattern within - In remembrance, Dr. John Fallon. Developmental Biology, 2020, 463, 182-184.	2.0	0
45	Latent Developmental Potential to Form Limb-Like Skeletal Structures in Zebrafish. SSRN Electronic Journal, 0, , .	0.4	0
46	Integrated analysis of bioelectric signaling in regulation of proportion FASEB Journal, 2020, 34, 1-1.	0.5	0