
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5841792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regiodivergent Reductive Opening of Epoxides by Catalytic Hydrogenation Promoted by a (Cyclopentadienone)iron Complex. ACS Catalysis, 2022, 12, 235-246.	11.2	17
2	Advanced Pyrrolidineâ€Carbamate Selfâ€Immolative Spacer with Tertiary Amine Handle Induces Superfast Cyclative Drug Release. ChemMedChem, 2022, 17, .	3.2	5
3	Functionalized 2â€Hydroxybenzaldehydeâ€PEG Modules as Portable Tags for the Engagement of Protein Lysine ϵâ€Amino Groups. European Journal of Organic Chemistry, 2021, 2021, 1763-1767.	2.4	1
4	A trifunctional self-immolative spacer enables drug release with two non-sequential enzymatic cleavages. Chemical Communications, 2021, 57, 7778-7781.	4.1	7
5	Fast Cyclization of a Prolineâ€Derived Selfâ€Immolative Spacer Improves the Efficacy of Carbamate Prodrugs. Angewandte Chemie, 2020, 132, 4205-4210.	2.0	8
6	Fast Cyclization of a Prolineâ€Derived Selfâ€Immolative Spacer Improves the Efficacy of Carbamate Prodrugs. Angewandte Chemie - International Edition, 2020, 59, 4176-4181.	13.8	35
7	Insight into GEBR-32a: Chiral Resolution, Absolute Configuration and Enantiopreference in PDE4D Inhibition. Molecules, 2020, 25, 935.	3.8	8
8	Recent Catalytic Applications of (Cyclopentadienone)iron Complexes. European Journal of Organic Chemistry, 2020, 2020, 3192-3205.	2.4	28
9	Innovative Linker Strategies for Tumorâ€Targeted Drug Conjugates. Chemistry - A European Journal, 2019, 25, 14740-14757.	3.3	68
10	Hydrogen-Borrowing Amination of Secondary Alcohols Promoted by a (Cyclopentadienone)iron Complex. Synthesis, 2019, 51, 3545-3555.	2.3	15
11	Chiral (cyclopentadienone)iron complexes with a stereogenic plane as pre-catalysts for the asymmetric hydrogenation of polar double bonds. Tetrahedron, 2019, 75, 1415-1424.	1.9	15
12	β-Glucuronidase triggers extracellular MMAE release from an integrin-targeted conjugate. Organic and Biomolecular Chemistry, 2019, 17, 4705-4710.	2.8	14
13	Synthesis and Biological Evaluation of RGD and <i>iso</i> DGR–Monomethyl Auristatin Conjugates Targeting Integrin α _V l² ₃ . ChemMedChem, 2019, 14, 938-942.	3.2	26
14	Rational Design of Antiangiogenic Helical Oligopeptides Targeting the Vascular Endothelial Growth Factor Receptors. Frontiers in Chemistry, 2019, 7, 170.	3.6	10
15	A dimeric bicyclic RGD ligand displays enhanced integrin binding affinity and strong biological effects on U-373 MG glioblastoma cells. Organic and Biomolecular Chemistry, 2019, 17, 8913-8917.	2.8	4
16	Frontispiece: Innovative Linker Strategies for Tumorâ€Targeted Drug Conjugates. Chemistry - A European Journal, 2019, 25, .	3.3	0
17	Improving C=N Bond Reductions with (Cyclopentadienone)iron Complexes: Scope and Limitations. European Journal of Organic Chemistry, 2019, 2019, 647-654.	2.4	12
18	Neutrophil Elastase Promotes Linker Cleavage and Paclitaxel Release from an Integrinâ€Targeted Conjugate. Chemistry - A European Journal, 2019, 25, 1696-1700.	3.3	29

#	Article	IF	CITATIONS
19	Synthesis and Biological Evaluation of Paclitaxel Conjugates Involving Linkers Cleavable by Lysosomal Enzymes and α _V β ₃ â€Integrin Ligands for Tumor Targeting. European Journal of Organic Chemistry, 2018, 2018, 2902-2909.	2.4	16
20	Efficient Synthesis of Amines by Iron atalyzed C=N Transfer Hydrogenation and C=O Reductive Amination. Advanced Synthesis and Catalysis, 2018, 360, 1054-1059.	4.3	43
21	Synthesis and biological evaluation of RGD and isoDGR peptidomimetic-α-amanitin conjugates for tumor-targeting. Beilstein Journal of Organic Chemistry, 2018, 14, 407-415.	2.2	30
22	Synthesis of [Bis(hexamethylene)cyclopentadienone]iron Tricarbonyl and its Application to the Catalytic Reduction of C=O Bonds. ChemCatChem, 2017, 9, 1461-1468.	3.7	34
23	Tumor Targeting with an <i>iso</i> DGR–Drug Conjugate. Chemistry - A European Journal, 2017, 23, 7910-7914.	3.3	17
24	Insights into the Binding of Cyclic RGD Peptidomimetics to α ₅ β ₁ Integrin by using Live-Cell NMR And Computational Studies. ChemistryOpen, 2017, 6, 128-136.	1.9	21
25	Targeting Integrin α _V β ₃ with Theranostic RGD-Camptothecin Conjugates Bearing a Disulfide Linker: Biological Evaluation Reveals a Complex Scenario. ChemistrySelect, 2017, 2, 4759-4766.	1.5	14
26	Use of the Trost Ligand in the Ruthenium atalyzed Asymmetric Hydrogenation of Ketones. ChemCatChem, 2017, 9, 3125-3130.	3.7	14
27	Frontispiece: Multivalency Increases the Binding Strength of RGD Peptidomimeticâ€Paclitaxel Conjugates to Integrin α _V β ₃ . Chemistry - A European Journal, 2017, 23, .	3.3	Ο
28	Multivalency Increases the Binding Strength of RGD Peptidomimeticâ€Paclitaxel Conjugates to Integrin α _V β ₃ . Chemistry - A European Journal, 2017, 23, 14410-14415.	3.3	27
29	Investigating the Interaction of Cyclic RGD Peptidomimetics with αVβ6 Integrin by Biochemical and Molecular Docking Studies. Cancers, 2017, 9, 128.	3.7	18
30	Enantioselective Reductions Promoted by (Cyclopentadienone)iron Complexes. Chimia, 2017, 71, 580.	0.6	13
31	Asymmetric Hydrogenation of 3â€Substituted Pyridinium Salts. Chemistry - A European Journal, 2016, 22, 9528-9532.	3.3	29
32	Expanding the Catalytic Scope of (Cyclopentadienone)iron Complexes to the Hydrogenation of Activated Esters to Alcohols. ChemCatChem, 2016, 8, 3431-3435.	3.7	27
33	Riding the Wave of Monodentate Ligand Revival: From the A/B Concept to Noncovalent Interactions. Chemical Record, 2016, 16, 2544-2560.	5.8	3
34	A Mixed Ligand Approach for the Asymmetric Hydrogenation of 2‣ubstituted Pyridinium Salts. Advanced Synthesis and Catalysis, 2016, 358, 2589-2593.	4.3	18
35	Asymmetric Transfer Hydrogenation of Ketones with Modified Grubbs Metathesis Catalysts: On the Way to a Tandem Process. Advanced Synthesis and Catalysis, 2016, 358, 515-519.	4.3	8
36	Toward the identification of neuroprotective agents: g-scale synthesis, pharmacokinetic evaluation and CNS distribution of (<i>R</i>)-RC-33, a promising Sigma1 receptor agonist. Future Medicinal Chemistry, 2016, 8, 287-295.	2.3	30

#	Article	IF	CITATIONS
37	Synthesis, Characterization, and Biological Evaluation of a Dualâ€Action Ligand Targeting α _v β ₃ Integrin and VEGF Receptors. ChemistryOpen, 2015, 4, 633-641.	1.9	25
38	Assisted Tandem Catalysis: Metathesis Followed by Asymmetric Hydrogenation from a Single Ruthenium Source. Advanced Synthesis and Catalysis, 2015, 357, 2223-2228.	4.3	16
39	Synthesis of (<i>R</i>)â€BINOLâ€Derived (Cyclopentadienone)iron Complexes and Their Application in the Catalytic Asymmetric Hydrogenation of Ketones. European Journal of Organic Chemistry, 2015, 2015, 5526-5536.	2.4	45
40	Synthesis of a 4â€Vinyltetrahydrocarbazole by Palladiumâ€Catalyzed Asymmetric Allylic Alkylation of Indoleâ€Containing Allylic Carbonates. European Journal of Organic Chemistry, 2015, 2015, 6669-6678.	2.4	16
41	?v?3 Integrin-Targeted Peptide/Peptidomimetic-Drug Conjugates: In-Depth Analysis of the Linker Technology. Current Topics in Medicinal Chemistry, 2015, 16, 314-329.	2.1	44
42	Cyclic <i>iso</i> DGR and RGD Peptidomimetics Containing Bifunctional Diketopiperazine Scaffolds are Integrin Antagonists. Chemistry - A European Journal, 2015, 21, 6265-6271.	3.3	33
43	Chiral (Cyclopentadienone)iron Complexes for the Catalytic Asymmetric Hydrogenation of Ketones. European Journal of Organic Chemistry, 2015, 2015, 1887-1893.	2.4	56
44	Synthesis and Biological Evaluation of RGD Peptidomimetic–Paclitaxel Conjugates Bearing Lysosomally Cleavable Linkers. Chemistry - A European Journal, 2015, 21, 6921-6929.	3.3	48
45	Tsuji-Trost Type Functionalization of Allylic Substrates with Challenging Leaving Groups: Recent Developments. Current Organic Chemistry, 2015, 19, 106-120.	1.6	23
46	Synthesis and biological evaluation of dual action <i>cyclo</i> -RGD/SMAC mimetic conjugates targeting α _v β ₃ /α _v β ₅ integrins and IAP proteins. Organic and Biomolecular Chemistry, 2014, 12, 3288-3302.	2.8	19
47	Enantioselective synthesis of 1-vinyltetrahydroisoquinolines through palladium-catalysed intramolecular allylic amidation with chiral PhthalaPhos ligands. Tetrahedron: Asymmetry, 2014, 25, 844-850.	1.8	4
48	Cyclic <i>iso</i> DGR Peptidomimetics as Lowâ€Nanomolar α _v β ₃ Integrin Ligands. Chemistry - A European Journal, 2013, 19, 3563-3567.	3.3	28
49	Studies on the Enantiomers of RC-33 as Neuroprotective Agents: Isolation, Configurational Assignment, and Preliminary Biological Profile. Chirality, 2013, 25, 814-822.	2.6	27
50	Chemical, Pharmacological, and in vitro Metabolic Stability Studies on Enantiomerically Pure RCâ€33 Compounds: Promising Neuroprotective Agents Acting as Iƒ ₁ Receptor Agonists. ChemMedChem, 2013, 8, 1514-1527.	3.2	40
51	SupraBox: Chiral Supramolecular Oxazoline Ligands. European Journal of Organic Chemistry, 2012, 2012, 5451-5461.	2.4	19
52	A Library Approach to the Development of BenzaPhos: Highly Efficient Chiral Supramolecular Ligands for Asymmetric Hydrogenation. Chemistry - A European Journal, 2012, 18, 10368-10381.	3.3	33
53	Rhodiumâ€Catalyzed Asymmetric Hydrogenation of Olefins with PhthalaPhos, a New Class of Chiral Supramolecular Ligands. Chemistry - A European Journal, 2012, 18, 1383-1400.	3.3	57
54	Stereoselectivity in (Z)-Vinylmetal Additions to the Dictyostatin C1-C9 β-Silyloxy Aldehyde. European Journal of Organic Chemistry, 2012, 2012, 144-153.	2.4	2

#	Article	IF	CITATIONS
55	Supramolecular ligand–ligand and ligand–substrate interactions for highly selective transition metal catalysis. Dalton Transactions, 2011, 40, 4355.	3.3	115
56	Highly Stereoselective Total Synthesis of (+)â€9â€ <i>epi</i> â€Dictyostatin and (–)â€12,13â€Bisâ€ <i>epi</i> â€dictyostatin. European Journal of Organic Chemistry, 2011, 2011, 2643-2661.	2.4	16
57	A Highly Stereoselective Total Synthesis of (+)â€9â€ <i>epi</i> â€Dictyostatin. European Journal of Organic Chemistry, 2010, 2010, 5767-5771.	2.4	9
58	PhthalaPhos: Chiral Supramolecular Ligands for Enantioselective Rhodiumâ€Catalyzed Hydrogenation Reactions. Angewandte Chemie - International Edition, 2010, 49, 6633-6637.	13.8	50
59	Combinations of Acidic and Basic Monodentate Binaphtholic Phosphites as Supramolecular Bidentate Ligands for Enantioselective Rhâ€Catalyzed Hydrogenations. European Journal of Organic Chemistry, 2009, 2009, 2539-2547.	2.4	36
60	Chiral (salen)Co(III)(N-benzyl-l-serine)-derived phosphites: monodentate P-ligands for enantioselective catalytic applications. Tetrahedron: Asymmetry, 2009, 20, 1185-1190.	1.8	7
61	Unusual Mechanistic Course of Some NHC-Mediated Transesterifications. Organic Letters, 2009, 11, 1643-1646.	4.6	28
62	Combination of a binaphthol-derived phosphite and a C1-symmetric phosphinamine generates heteroleptic catalysts in Rh- and Pd-mediated reactions. Chemical Communications, 2009, , 3539.	4.1	29
63	Stereoselective reactions involving hypervalent silicate complexes. Coordination Chemistry Reviews, 2008, 252, 492-512.	18.8	98
64	A New Class of Chiral Lewis Basic Metal-Free Catalysts for Stereoselective Allylations of Aldehydes. Synlett, 2008, 2008, 1061-1065.	1.8	5
65	A Practical Synthesis of the C1-C9 Fragment of Dictyostatin. Synthesis, 2008, 2008, 2158-2162.	2.3	4
66	Enantioselective allylation of aldehydes with allyltrichlorosilane promoted by new chiral dipyridylmethane N-oxides. Tetrahedron Letters, 2007, 48, 4037-4041.	1.4	42
67	Structurally Simple PyridineN-Oxides as Efficient Organocatalysts for the Enantioselective Allylation of Aromatic Aldehydes. Journal of Organic Chemistry, 2006, 71, 1458-1463.	3.2	78
68	A multifunctional proline-based organic catalyst for enantioselective aldol reactions. Tetrahedron: Asymmetry, 2006, 17, 2754-2760.	1.8	64
69	Readily available pyridine- and quinoline-N-oxides as new organocatalysts for the enantioselective allylation of aromatic aldehydes with allyl(trichloro)silane. Chirality, 2005, 17, 396-403.	2.6	30