Luca Pignataro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5841792/publications.pdf

Version: 2024-02-01

69 papers

1,822 citations

201674 27 h-index 39 g-index

84 all docs 84 docs citations

84 times ranked 1768 citing authors

#	Article	IF	CITATIONS
1	Supramolecular ligand–ligand and ligand–substrate interactions for highly selective transition metal catalysis. Dalton Transactions, 2011, 40, 4355.	3.3	115
2	Stereoselective reactions involving hypervalent silicate complexes. Coordination Chemistry Reviews, 2008, 252, 492-512.	18.8	98
3	Structurally Simple PyridineN-Oxides as Efficient Organocatalysts for the Enantioselective Allylation of Aromatic Aldehydes. Journal of Organic Chemistry, 2006, 71, 1458-1463.	3. 2	78
4	Innovative Linker Strategies for Tumor†Targeted Drug Conjugates. Chemistry - A European Journal, 2019, 25, 14740-14757.	3.3	68
5	A multifunctional proline-based organic catalyst for enantioselective aldol reactions. Tetrahedron: Asymmetry, 2006, 17, 2754-2760.	1.8	64
6	Rhodiumâ€Catalyzed Asymmetric Hydrogenation of Olefins with PhthalaPhos, a New Class of Chiral Supramolecular Ligands. Chemistry - A European Journal, 2012, 18, 1383-1400.	3.3	57
7	Chiral (Cyclopentadienone)iron Complexes for the Catalytic Asymmetric Hydrogenation of Ketones. European Journal of Organic Chemistry, 2015, 2015, 1887-1893.	2.4	56
8	PhthalaPhos: Chiral Supramolecular Ligands for Enantioselective Rhodium atalyzed Hydrogenation Reactions. Angewandte Chemie - International Edition, 2010, 49, 6633-6637.	13.8	50
9	Synthesis and Biological Evaluation of RGD Peptidomimetic–Paclitaxel Conjugates Bearing Lysosomally Cleavable Linkers. Chemistry - A European Journal, 2015, 21, 6921-6929.	3 . 3	48
10	Synthesis of (<i>R</i>)â€BINOLâ€Derived (Cyclopentadienone)iron Complexes and Their Application in the Catalytic Asymmetric Hydrogenation of Ketones. European Journal of Organic Chemistry, 2015, 2015, 5526-5536.	2.4	45
11	?v?3 Integrin-Targeted Peptide/Peptidomimetic-Drug Conjugates: In-Depth Analysis of the Linker Technology. Current Topics in Medicinal Chemistry, 2015, 16, 314-329.	2.1	44
12	Efficient Synthesis of Amines by Ironâ€Catalyzed C=N Transfer Hydrogenation and C=O Reductive Amination. Advanced Synthesis and Catalysis, 2018, 360, 1054-1059.	4.3	43
13	Enantioselective allylation of aldehydes with allyltrichlorosilane promoted by new chiral dipyridylmethane N-oxides. Tetrahedron Letters, 2007, 48, 4037-4041.	1.4	42
14	Chemical, Pharmacological, and in vitro Metabolic Stability Studies on Enantiomerically Pure RCâ \in 33 Compounds: Promising Neuroprotective Agents Acting as İ f _{1<fsub> Receptor Agonists. ChemMedChem, 2013, 8, 1514-1527.}	3 . 2	40
15	Combinations of Acidic and Basic Monodentate Binaphtholic Phosphites as Supramolecular Bidentate Ligands for Enantioselective Rh atalyzed Hydrogenations. European Journal of Organic Chemistry, 2009, 2009, 2539-2547.	2.4	36
16	Fast Cyclization of a Prolineâ€Derived Selfâ€Immolative Spacer Improves the Efficacy of Carbamate Prodrugs. Angewandte Chemie - International Edition, 2020, 59, 4176-4181.	13.8	35
17	Synthesis of [Bis(hexamethylene)cyclopentadienone]iron Tricarbonyl and its Application to the Catalytic Reduction of C=O Bonds. ChemCatChem, 2017, 9, 1461-1468.	3.7	34
18	A Library Approach to the Development of BenzaPhos: Highly Efficient Chiral Supramolecular Ligands for Asymmetric Hydrogenation. Chemistry - A European Journal, 2012, 18, 10368-10381.	3.3	33

#	Article	IF	CITATIONS
19	Cyclic <i>iso</i> DGR and RGD Peptidomimetics Containing Bifunctional Diketopiperazine Scaffolds are Integrin Antagonists. Chemistry - A European Journal, 2015, 21, 6265-6271.	3.3	33
20	Readily available pyridine- and quinoline-N-oxides as new organocatalysts for the enantioselective allylation of aromatic aldehydes with allyl(trichloro)silane. Chirality, 2005, 17, 396-403.	2.6	30
21	Toward the identification of neuroprotective agents: g-scale synthesis, pharmacokinetic evaluation and CNS distribution of $(\langle i\rangle R\langle i\rangle)$ -RC-33, a promising Sigma1 receptor agonist. Future Medicinal Chemistry, 2016, 8, 287-295.	2.3	30
22	Synthesis and biological evaluation of RGD and isoDGR peptidomimetic-α-amanitin conjugates for tumor-targeting. Beilstein Journal of Organic Chemistry, 2018, 14, 407-415.	2.2	30
23	Combination of a binaphthol-derived phosphite and a C1-symmetric phosphinamine generates heteroleptic catalysts in Rh- and Pd-mediated reactions. Chemical Communications, 2009, , 3539.	4.1	29
24	Asymmetric Hydrogenation of 3â€Substituted Pyridinium Salts. Chemistry - A European Journal, 2016, 22, 9528-9532.	3.3	29
25	Neutrophil Elastase Promotes Linker Cleavage and Paclitaxel Release from an Integrinâ€Targeted Conjugate. Chemistry - A European Journal, 2019, 25, 1696-1700.	3.3	29
26	Unusual Mechanistic Course of Some NHC-Mediated Transesterifications. Organic Letters, 2009, 11, 1643-1646.	4.6	28
27	Cyclic <i>iso</i> DGR Peptidomimetics as Lowâ€Nanomolar α _v β ₃ Integrin Ligands. Chemistry - A European Journal, 2013, 19, 3563-3567.	3.3	28
28	Recent Catalytic Applications of (Cyclopentadienone)iron Complexes. European Journal of Organic Chemistry, 2020, 2020, 3192-3205.	2.4	28
29	Studies on the Enantiomers of RC-33 as Neuroprotective Agents: Isolation, Configurational Assignment, and Preliminary Biological Profile. Chirality, 2013, 25, 814-822.	2.6	27
30	Expanding the Catalytic Scope of (Cyclopentadienone)iron Complexes to the Hydrogenation of Activated Esters to Alcohols. ChemCatChem, 2016, 8, 3431-3435.	3.7	27
31	Multivalency Increases the Binding Strength of RGD Peptidomimeticâ€Paclitaxel Conjugates to Integrin α _V β ₃ . Chemistry - A European Journal, 2017, 23, 14410-14415.	3.3	27
32	Synthesis and Biological Evaluation of RGD and <i>iso</i> DGR–Monomethyl Auristatin Conjugates Targeting Integrin α _V β ₃ . ChemMedChem, 2019, 14, 938-942.	3.2	26
33	Synthesis, Characterization, and Biological Evaluation of a Dualâ€Action Ligand Targeting α _v β ₃ Integrin and VEGF Receptors. ChemistryOpen, 2015, 4, 633-641.	1.9	25
34	Tsuji-Trost Type Functionalization of Allylic Substrates with Challenging Leaving Groups: Recent Developments. Current Organic Chemistry, 2015, 19, 106-120.	1.6	23
35	Insights into the Binding of Cyclic RGD Peptidomimetics to α ₅ β ₁ Integrin by using Live-Cell NMR And Computational Studies. ChemistryOpen, 2017, 6, 128-136.	1.9	21
36	SupraBox: Chiral Supramolecular Oxazoline Ligands. European Journal of Organic Chemistry, 2012, 2012, 5451-5461.	2.4	19

3

#	Article	IF	CITATIONS
37	Synthesis and biological evaluation of dual action $<$ i>cyclo $<$ i>-RGD/SMAC mimetic conjugates targeting $\hat{1}$ ± $<$ sub> $\hat{1}$ 2 $<$ sub> $\hat{1}$	2.8	19
38	A Mixed Ligand Approach for the Asymmetric Hydrogenation of 2â€Substituted Pyridinium Salts. Advanced Synthesis and Catalysis, 2016, 358, 2589-2593.	4.3	18
39	Investigating the Interaction of Cyclic RGD Peptidomimetics with $\hat{l}\pm V\hat{l}^26$ Integrin by Biochemical and Molecular Docking Studies. Cancers, 2017, 9, 128.	3.7	18
40	Tumor Targeting with an <i>i>iso</i> DGR–Drug Conjugate. Chemistry - A European Journal, 2017, 23, 7910-7914.	3.3	17
41	Regiodivergent Reductive Opening of Epoxides by Catalytic Hydrogenation Promoted by a (Cyclopentadienone)iron Complex. ACS Catalysis, 2022, 12, 235-246.	11.2	17
42	Highly Stereoselective Total Synthesis of (+)â€9â€ <i>epi</i> â€Dictyostatin and (â€")â€12,13â€Bisâ€ <i>epi</i> â€dictyostatin. European Journal of Organic Chemistry, 2011, 2011, 2643-2661.	2.4	16
43	Assisted Tandem Catalysis: Metathesis Followed by Asymmetric Hydrogenation from a Single Ruthenium Source. Advanced Synthesis and Catalysis, 2015, 357, 2223-2228.	4.3	16
44	Synthesis of a 4â€Vinyltetrahydrocarbazole by Palladiumâ€Catalyzed Asymmetric Allylic Alkylation of Indoleâ€Containing Allylic Carbonates. European Journal of Organic Chemistry, 2015, 2015, 6669-6678.	2.4	16
45	Synthesis and Biological Evaluation of Paclitaxel Conjugates Involving Linkers Cleavable by Lysosomal Enzymes and \hat{l}_{\pm} _{\hat{l}_{\pm}<}}	2.4	16
46	Hydrogen-Borrowing Amination of Secondary Alcohols Promoted by a (Cyclopentadienone)iron Complex. Synthesis, 2019, 51, 3545-3555.	2.3	15
47	Chiral (cyclopentadienone)iron complexes with a stereogenic plane as pre-catalysts for the asymmetric hydrogenation of polar double bonds. Tetrahedron, 2019, 75, 1415-1424.	1.9	15
48	Targeting Integrin α _V β ₃ with Theranostic RGD-Camptothecin Conjugates Bearing a Disulfide Linker: Biological Evaluation Reveals a Complex Scenario. ChemistrySelect, 2017, 2, 4759-4766.	1.5	14
49	Use of the Trost Ligand in the Rutheniumâ€Catalyzed Asymmetric Hydrogenation of Ketones. ChemCatChem, 2017, 9, 3125-3130.	3.7	14
50	\hat{l}^2 -Glucuronidase triggers extracellular MMAE release from an integrin-targeted conjugate. Organic and Biomolecular Chemistry, 2019, 17, 4705-4710.	2.8	14
51	Enantioselective Reductions Promoted by (Cyclopentadienone)iron Complexes. Chimia, 2017, 71, 580.	0.6	13
52	Improving C=N Bond Reductions with (Cyclopentadienone)iron Complexes: Scope and Limitations. European Journal of Organic Chemistry, 2019, 2019, 647-654.	2.4	12
53	Rational Design of Antiangiogenic Helical Oligopeptides Targeting the Vascular Endothelial Growth Factor Receptors. Frontiers in Chemistry, 2019, 7, 170.	3.6	10
54	A Highly Stereoselective Total Synthesis of (+)â€9â€ <i>epi</i> â€Dictyostatin. European Journal of Organic Chemistry, 2010, 2010, 5767-5771.	2.4	9

#	Article	IF	CITATIONS
55	Asymmetric Transfer Hydrogenation of Ketones with Modified Grubbs Metathesis Catalysts: On the Way to a Tandem Process. Advanced Synthesis and Catalysis, 2016, 358, 515-519.	4.3	8
56	Fast Cyclization of a Prolineâ€Derived Selfâ€Immolative Spacer Improves the Efficacy of Carbamate Prodrugs. Angewandte Chemie, 2020, 132, 4205-4210.	2.0	8
57	Insight into GEBR-32a: Chiral Resolution, Absolute Configuration and Enantiopreference in PDE4D Inhibition. Molecules, 2020, 25, 935.	3.8	8
58	Chiral (salen)Co(III)(N-benzyl-l-serine)-derived phosphites: monodentate P-ligands for enantioselective catalytic applications. Tetrahedron: Asymmetry, 2009, 20, 1185-1190.	1.8	7
59	A trifunctional self-immolative spacer enables drug release with two non-sequential enzymatic cleavages. Chemical Communications, 2021, 57, 7778-7781.	4.1	7
60	A New Class of Chiral Lewis Basic Metal-Free Catalysts for Stereoselective Allylations of Aldehydes. Synlett, 2008, 2008, 1061-1065.	1.8	5
61	Advanced Pyrrolidineâ€Carbamate Selfâ€Immolative Spacer with Tertiary Amine Handle Induces Superfast Cyclative Drug Release. ChemMedChem, 2022, 17, .	3.2	5
62	A Practical Synthesis of the C1-C9 Fragment of Dictyostatin. Synthesis, 2008, 2008, 2158-2162.	2.3	4
63	Enantioselective synthesis of 1-vinyltetrahydroisoquinolines through palladium-catalysed intramolecular allylic amidation with chiral PhthalaPhos ligands. Tetrahedron: Asymmetry, 2014, 25, 844-850.	1.8	4
64	A dimeric bicyclic RGD ligand displays enhanced integrin binding affinity and strong biological effects on U-373 MG glioblastoma cells. Organic and Biomolecular Chemistry, 2019, 17, 8913-8917.	2.8	4
65	Riding the Wave of Monodentate Ligand Revival: From the A/B Concept to Noncovalent Interactions. Chemical Record, 2016, 16, 2544-2560.	5.8	3
66	Stereoselectivity in (Z)-Vinylmetal Additions to the Dictyostatin C1-C9 Î ² -Silyloxy Aldehyde. European Journal of Organic Chemistry, 2012, 2012, 144-153.	2.4	2
67	Functionalized 2â€Hydroxybenzaldehydeâ€PEG Modules as Portable Tags for the Engagement of Protein Lysine ϵâ€Amino Groups. European Journal of Organic Chemistry, 2021, 2021, 1763-1767.	2.4	1
68	Frontispiece: Multivalency Increases the Binding Strength of RGD Peptidomimeticâ€Paclitaxel Conjugates to Integrin α _V β ₃ . Chemistry - A European Journal, 2017, 23, .	3.3	0
69	Frontispiece: Innovative Linker Strategies for Tumorâ€Targeted Drug Conjugates. Chemistry - A European Journal, 2019, 25, .	3.3	0