Jinho Joo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5841616/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation and control of residual amorphous phases in carbon-doped MgB2 superconductors. Journal of Alloys and Compounds, 2021, 864, 158867.	5.5	8
2	Enhanced Gas Sensing Performance of Hydrothermal MoS2 Nanosheets by Post-Annealing in Hydrogen Ambient. Bulletin of the Chemical Society of Japan, 2019, 92, 1094-1099.	3.2	16
3	Enhanced Gas Sensing Performance of Surfaceâ€Activated MoS ₂ Nanosheets Made by Hydrothermal Method with Excess Sulfur Precursor. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800999.	1.8	7
4	Effect of Annealing Temperature on Morphology and Electrical Property of Hydrothermally-Grown ZnO Nanorods/ <i>p</i> -Si Heterojunction Diodes. Journal of Nanoscience and Nanotechnology, 2019, 19, 1640-1644.	0.9	6
5	Enhanced photocatalytic activity of porous single crystal TiO2/CNT composites by annealing process. Ceramics International, 2018, 44, 1641-1645.	4.8	17
6	Effect of Annealing Temperature on Morphology, Defect States, and Photocatalytic Performance of ZnO Nanorods. Journal of Nanoscience and Nanotechnology, 2018, 18, 7939-7942.	0.9	0
7	Effects of Precursor Concentration on Dimensional Size, Defect State, and Gas Sensing Performance of MoS ₂ Sheets Synthesized by Hydrothermal Method. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800079.	1.8	5
8	Facet Control of Subunits in Anatase TiO2 Mesocrystal by Diethanolamine for Enhanced Photocatalytic Activity. Journal of Nanoscience and Nanotechnology, 2018, 18, 6090-6094.	0.9	1
9	Synergistic effect of Indium and Gallium co-doping on growth behavior and physical properties of hydrothermally grown ZnO nanorods. Scientific Reports, 2017, 7, 41992.	3.3	50
10	Effects of Calcination Temperature on Morphology, Microstructure, and Photocatalytic Performance of TiO ₂ Mesocrystals. Industrial & Engineering Chemistry Research, 2017, 56, 8235-8240.	3.7	32
11	Enhanced Photocatalytic Activity of ZnO Nanorods with Tubular Facet Synthesized by Hydrothermal Method. Journal of Nanoscience and Nanotechnology, 2016, 16, 11164-11168.	0.9	5
12	Effects of Hydrothermal Temperature on Crystallinity, Microstructure, and Photocatalytic Activity of Anatase TiO2 Mesocrystals. Journal of Nanoscience and Nanotechnology, 2016, 16, 11153-11157.	0.9	4
13	Effect of Al Incorporation on Morphology and Electrical Conductivity of ZnO Nanorods Prepared Using Hydrothermal Method. Journal of Nanoscience and Nanotechnology, 2016, 16, 11272-11276.	0.9	6
14	Effects of Precursor Concentration on Morphology of MoS2 Nanosheets by Hydrothermal Synthesis. Journal of Nanoscience and Nanotechnology, 2016, 16, 11548-11551.	0.9	19
15	Hydrothermally Grown In-doped ZnO Nanorods on p-GaN Films for Color-tunable Heterojunction Light-emitting-diodes. Scientific Reports, 2015, 5, 10410.	3.3	58
16	Surfaceâ€Tunable Bioluminescence Resonance Energy Transfer via Geometryâ€Controlled ZnO Nanorod Coordination. Small, 2015, 11, 3469-3475.	10.0	4
17	Effect of post-annealing temperature on the dielectric function of solution-processed LaAlO x /Si Films. Journal of the Korean Physical Society, 2014, 64, 1509-1513.	0.7	0
18	Influences of rapid thermal process on solution-deposited Ti-silicate/Si films: Phase segregation, composition and interface changes, and dielectric properties. Materials Chemistry and Physics, 2014, 145, 168-175.	4.0	6

Јілно Јоо

#	Article	IF	CITATIONS
19	Application of rapid thermal process to solution-processed Ti-silicate films for enhancing permittivity without losing amorphous nature. Current Applied Physics, 2013, 13, S41-S44.	2.4	2
20	Optical properties of solution-processed LaAlOx/Si films using spectroscopic ellipsometry. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 04D110.	1.2	3
21	Effects of In or Ga doping on the growth behavior and optical properties of ZnO nanorods fabricated by hydrothermal process. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1552-1556.	1.8	44
22	Effects of Heating Time and Intermediate Heating on Sol–Gel-Processed ZrO\$_{2}\$ Thin Films. Japanese Journal of Applied Physics, 2012, 51, 09MF13.	1.5	1
23	Phase Transition and Microstructural Changes of Sol–Gel Derived ZrO2/Si Films by Thermal Annealing: Possible Stability of Tetragonal Phase without Transition to Monoclinic Phase. Journal of Physical Chemistry C, 2012, 116, 11386-11392.	3.1	11
24	Phase and structural evolution of sol–gel synthesized ZrO2/Si thin films under heat treatment. Journal of Materials Science, 2012, 47, 5216-5221.	3.7	6
25	Effect of SiCâ€Impurity Layer and Growth Temperature on MgB ₂ Superconducting Tapes Fabricated by HPCVD. Chemical Vapor Deposition, 2012, 18, 36-40.	1.3	5
26	Effect of annealing temperature on microstructural evolution and electrical properties of sol-gel processed ZrO2/Si films. Applied Physics Letters, 2011, 98, .	3.3	54
27	Effect of peak current density on the mechanical and electrical properties of copper/polymide fabricated by a pulsed electrodeposition process. Current Applied Physics, 2011, 11, S128-S131.	2.4	4
28	Effect of Ga content and sintering time on electrical properties of InGaZnO thin film transistors fabricated by sol–gel process. Journal of Crystal Growth, 2011, 326, 175-178.	1.5	26
29	Improvement of the critical current density and upper critical field in C-doped MgB2 wire using cellulose acetate. Metals and Materials International, 2010, 16, 1029-1033.	3.4	2
30	Study on the improved J(B) performance of polyacrylic acid-doped MgB2 bulks. Physica C: Superconductivity and Its Applications, 2010, 470, S1032-S1033.	1.2	3
31	Improvement of high-field J of MgB2 wires by polymethyl-methacrylate doping. Physica C: Superconductivity and Its Applications, 2010, 470, S1034-S1035.	1.2	4
32	O-free polyacrylonitrile doping to improve the Jc(B) and Hc2 of MgB2 wires. Physica C: Superconductivity and Its Applications, 2010, 470, 1430-1434.	1.2	3
33	Enhanced Magnetic Property of MgB\$_{2}\$ Wire Using Phenol-Formaldehyde Resin. IEEE Transactions on Applied Superconductivity, 2010, 20, 1593-1596.	1.7	2
34	Effect of Sintering Time at Low Temperature on the Properties of IGZO TFTs Fabricated by Using the Sol-gel Process. Journal of the Korean Physical Society, 2010, 57, 1836-1841.	0.7	14
35	Solution-processed InGaZnO-based thin film transistors for printed electronics applications. Applied Physics Letters, 2009, 95, .	3.3	90
36	Fabrication and Characterization of the \${m MgB}_{2}\$ Bulk Superconductors Doped by Carbon Nanotubes. IEEE Transactions on Applied Superconductivity, 2009, 19, 2767-2770.	1.7	4

Јілно Јоо

#	Article	IF	CITATIONS
37	Effect of Mechanical Alloying on the Microstructure and Properties of C-Doped \${m MgB}_{2}\$ Wire by Ex-Situ Process. IEEE Transactions on Applied Superconductivity, 2009, 19, 2710-2713.	1.7	2
38	Fabrication of C Doped \${hbox {MgB}}_{2}\$ Wire Using a Mixture of In-situ and Ex-situ Powders. IEEE Transactions on Applied Superconductivity, 2009, 19, 2702-2705.	1.7	2
39	Fabrication of two-layer flexible copper clad laminate by electroless-Cu plating on surface modified polyimide. Transactions of Nonferrous Metals Society of China, 2009, 19, 970-974.	4.2	16
40	Structural characterization of multi-coated YBCO films processed by metal-organic deposition method. Physica C: Superconductivity and Its Applications, 2008, 468, 1666-1669.	1.2	3
41	Fabrication of the YBCO Films Made by TFA-MOD Using the 211-Process. IEEE Transactions on Applied Superconductivity, 2007, 17, 3302-3305.	1.7	0
42	A Study on the Processing Variables of the BSCCO-2212 Bulk Superconductors. IEEE Transactions on Applied Superconductivity, 2007, 17, 3004-3007.	1.7	1
43	The Effects of the Humidity and Thickness on YBCO Film Prepared Using the TFA-MOD Method. IEEE Transactions on Applied Superconductivity, 2007, 17, 3298-3301.	1.7	3
44	Characterization of Failure Behaviors in Anisotropic Conductive Interconnection. Materials Transactions, 2007, 48, 1070-1078.	1.2	12
45	Fabrication of Ni Metal Mask by Electroforming Process Using Wetting Agents. Journal of Electronic Materials, 2007, 36, 1510-1515.	2.2	7
46	Interfacial reactions and joint strength of Sn–37Pb and Sn–3.5Ag solders with immersion Ag-plated Cu substrate during aging at 150 °C. Journal of Materials Research, 2006, 21, 3196-3204.	2.6	30
47	Fabrication of YBCO coated conductor by TFA-MOD using the "211 process― Physica C: Superconductivity and Its Applications, 2006, 445-448, 594-597.	1.2	0
48	Development of YBCO film approached by TFA-MOD method using the Y2Ba1Cu1Ox and Ba3Cu5O8 powders. Materials Research Society Symposia Proceedings, 2006, 946, 1.	0.1	0
49	Fabrication of YBCO coated conductor by TFA-MOD method in route of dissolving Y211 and Ba3Cu5O8 powders in TFA. Physica C: Superconductivity and Its Applications, 2005, 426-431, 973-978.	1.2	5