Clément Perrin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5841590/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Initial results from the InSight mission on Mars. Nature Geoscience, 2020, 13, 183-189.	5.4	274
2	SEIS: Insight's Seismic Experiment for Internal Structure of Mars. Space Science Reviews, 2019, 215, 12.	3.7	238
3	Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data. Nature Geoscience, 2020, 13, 213-220.	5.4	207
4	The seismicity of Mars. Nature Geoscience, 2020, 13, 205-212.	5.4	194
5	Location of largest earthquake slip and fast rupture controlled by alongâ€strike change in fault structural maturity due to fault growth. Journal of Geophysical Research: Solid Earth, 2016, 121, 3666-3685.	1.4	175
6	Seismic detection of the martian core. Science, 2021, 373, 443-448.	6.0	169
7	The atmosphere of Mars as observed by InSight. Nature Geoscience, 2020, 13, 190-198.	5.4	161
8	Geology of the InSight landing site on Mars. Nature Communications, 2020, 11, 1014.	5.8	107
9	The Marsquake catalogue from InSight, sols 0–478. Physics of the Earth and Planetary Interiors, 2021, 310, 106595.	0.7	97
10	Pre-mission InSights on the Interior of Mars. Space Science Reviews, 2019, 215, 1.	3.7	85
11	Generic alongâ€strike segmentation of <scp>A</scp> far normal faults, <scp>E</scp> ast <scp>A</scp> frica: Implications on fault growth and stress heterogeneity on seismogenic fault planes. Geochemistry, Geophysics, Geosystems, 2015, 16, 443-467.	1.0	83
12	Companion guide to the marsquake catalog from InSight, Sols 0–478: Data content and non-seismic events. Physics of the Earth and Planetary Interiors, 2021, 310, 106597.	0.7	64
13	Off-fault tip splay networks: A genetic and generic property of faults indicative of their long-term propagation. Comptes Rendus - Geoscience, 2016, 348, 52-60.	0.4	61
14	A Study of Daytime Convective Vortices and Turbulence in the Martian Planetary Boundary Layer Based on Halfâ€aâ€Year of InSight Atmospheric Measurements and Largeâ€Eddy Simulations. Journal of Geophysical Research E: Planets, 2021, 126, .	1.5	45
15	Off-fault long-term damage: A condition to account for generic, triangular earthquake slip profiles. Geochemistry, Geophysics, Geosystems, 2014, 15, 1476-1493.	1.0	44
16	First Focal Mechanisms of Marsquakes. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006546.	1.5	43
17	The Marsquake Service: Securing Daily Analysis of SEIS Data and Building the Martian Seismicity Catalogue for InSight. Space Science Reviews, 2018, 214, 1.	3.7	41
18	Monitoring of Dust Devil Tracks Around the InSight Landing Site, Mars, and Comparison With In Situ Atmospheric Data, Geophysical Research Letters, 2020, 47, e2020GL087234,	1.5	30

Clément Perrin

#	Article	IF	CITATIONS
19	Recovering paleoearthquake slip record in a highly dynamic alluvial and tectonic region (Hope Fault,) Tj ETQq1	1 0.784314 1.4	• rgBT /Over
20	The Far Side of Mars: Two Distant Marsquakes Detected by InSight. The Seismic Record, 2022, 2, 88-99.	1.3	29
21	Vortexâ€Dominated Aeolian Activity at InSight's Landing Site, Part 1: Multiâ€Instrument Observations, Analysis, and Implications. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006757.	1.5	23
22	Geometry and Segmentation of Cerberus Fossae, Mars: Implications for Marsquake Properties. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	20
23	Repeated giant earthquakes on the Wairarapa fault, New Zealand, revealed by Lidar-based paleoseismology. Scientific Reports, 2020, 10, 2124.	1.6	19
24	Analyzing Low Frequency Seismic Events at Cerberus Fossae as Long Period Volcanic Quakes. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006518.	1.5	19
25	Seismic sources of InSight marsquakes and seismotectonic context of Elysium Planitia, Mars. Tectonophysics, 2022, 837, 229434.	0.9	18
26	Impact of erosion and décollements on large-scale faulting and folding in orogenic wedges: analogue models and case studies. Journal of the Geological Society, 2013, 170, 893-904.	0.9	17
27	Constraining Martian Regolith and Vortex Parameters From Combined Seismic and Meteorological Measurements. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006410.	1.5	16
28	The Shear Deformation Zone and the Smoothing of Faults With Displacement. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020447.	1.4	14
29	Seasonal seismic activity on Mars. Earth and Planetary Science Letters, 2021, 576, 117171.	1.8	13
30	Persistent fine-scale fault structure and rupture development: A new twist in the Parkfield, California, story. Earth and Planetary Science Letters, 2019, 521, 128-138.	1.8	10
31	Estimation of the Seismic Moment Rate from an Incomplete Seismicity Catalog, in the Context of the InSight Mission to Mars. Bulletin of the Seismological Society of America, 2019, 109, 1125-1147.	1.1	7
32	Inferring Vortex and Dust Devil Statistics from InSight. Planetary Science Journal, 2021, 2, 206.	1.5	6
33	Characteristics and possible origins of the seismicity in northwestern France. Comptes Rendus - Geoscience, 2021, 353, 53-77.	0.4	2
34	New perspectives in studying active faults in metropolitan France: the "Active faults France― (FACT/ATS) research axis from the Resif-Epos consortium. Comptes Rendus - Geoscience, 2021, 353, 381-412.	0.4	2