
Mohammad Iqbal Khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5841549/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constitutive Compressive Stress–Strain Behavior of Hybrid Steel-PVA High-Performance Fiber-Reinforced Concrete. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	12
2	Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete. Construction and Building Materials, 2022, 315, 125753.	7.2	12
3	Flexural Performance of Post-tensioned Rectangular Concrete-Filled FRP Tubes (CFFT) Beams Using High and Normal Strength Concrete. Lecture Notes in Civil Engineering, 2022, , 496-507.	0.4	Ο
4	Polycarboxylate superplasticizer and viscosity modifying agent: Mode of addition and its effect on cement paste rheology using image analysis. Journal of Building Engineering, 2022, 48, 103946.	3.4	4
5	Limestone Dust Variability Characterization and its Influence on the Properties of Self-Compacting Concrete and Pinhole Formation. Arabian Journal for Science and Engineering, 2022, 47, 12745-12763.	3.0	1
6	Experimental and numerical investigation of flexural behavior of hybrid fiber reinforced high strength incorporating binary and ternary blend of ultra fines. Structures, 2022, 42, 53-64.	3.6	4
7	Assessment of morphological characteristics and physico-mechanical properties of geopolymer green foam lightweight aggregate formulated by microwave irradiation. Journal of Building Engineering, 2021, 35, 102081.	3.4	8
8	Susceptibility of strain-hardening cementitious composite to curing conditions as a retrofitting material for RC beams. Journal of Engineered Fibers and Fabrics, 2021, 16, 155892502110203.	1.0	3
9	Effect of freshly produced electric arc-furnace dust and chloride-free chemical accelerators on concrete performance. Construction and Building Materials, 2021, 274, 121832.	7.2	9
10	Sustainable application of processed TBM excavated rock material as green structural concrete aggregate. Construction and Building Materials, 2021, 274, 121245.	7.2	12
11	Enhancing the Microstructure and Sustainability of Ultra-High-Performance Concrete Using Ultrafine Calcium Carbonate and High-Volume Fly Ash under Different Curing Regimes. Sustainability, 2021, 13, 3900.	3.2	8
12	Optimization of Arabian-Shield-Based Natural Pozzolan and Silica Fume for High-Performance Concrete Using Statistical Design of Experiments. Advances in Civil Engineering, 2021, 2021, 1-15.	0.7	2
13	Production of sustainable green mortar by ultrahigh utilization of fly ash: Technical, economic and environmental assessment. Construction and Building Materials, 2021, 281, 122617.	7.2	18
14	Characterization of chemical accelerators for sustainable recycling of fresh electric-arc furnace dust in cement pastes. Advanced Powder Technology, 2021, 32, 3046-3062.	4.1	5
15	Axial capacity and stiffness of post-heated circular and square columns strengthened with carbon fiber reinforced polymer jackets. Structures, 2021, 33, 2599-2610.	3.6	7
16	Strength and Acid Resistance of Ceramic-Based Self-Compacting Alkali-Activated Concrete: Optimizing and Predicting Assessment. Materials, 2021, 14, 6208.	2.9	7
17	Behavior of Non-Shear-Strengthened UHPC Beams under Flexural Loading: Influence of Reinforcement Depth. Applied Sciences (Switzerland), 2021, 11, 11168.	2.5	6
18	Investigation of the Impact of Graphene Nanoplatelets (GnP) on the Bond Stress of High-Performance Concrete Using Pullout Testing. Materials, 2021, 14, 7054.	2.9	14

#	Article	IF	CITATIONS
19	Behavior of Non-Shear-Strengthened UHPC Beams under Flexural Loading: Influence of Reinforcement Percentage. Applied Sciences (Switzerland), 2021, 11, 11346.	2.5	7
20	Optimization of the Fine to Coarse Aggregate Ratio for the Workability and Mechanical Properties of High Strength Steel Fiber Reinforced Concretes. Materials, 2020, 13, 5202.	2.9	5
21	Synthesis and characterization of sustainable geopolymer green clay bricks: An alternative to burnt clay brick. Construction and Building Materials, 2020, 259, 119659.	7.2	43
22	Fine limestone dust from ornamental stone factories: a potential filler in the production of High-Performance Hybrid Fiber-Reinforced Concrete. Construction and Building Materials, 2020, 262, 120009.	7.2	7
23	Formulation and characterization of geopolymer and conventional lightweight green concrete by incorporating synthetic lightweight aggregate. Journal of Building Engineering, 2020, 31, 101363.	3.4	12
24	Fine limestone dust from ornamental stone factories: A potential filler for a high-performance cementitious matrix. Construction and Building Materials, 2019, 224, 428-438.	7.2	6
25	Experimentation and Predictive Models for Properties of Concrete Added with Active and Inactive SiO2 Fillers. Materials, 2019, 12, 299.	2.9	15
26	Simplex-Lattice Hydration Prediction and Microstructure Verification of Cementitious Systems. Materials, 2019, 12, 490.	2.9	0
27	Effect of temperature on strain capacity and cracking system of SHCC of different workability and SAP contents. Construction and Building Materials, 2019, 213, 337-347.	7.2	6
28	Experimental investigation of bond and tube thickness effect on the flexural behavior of concrete-filled FPR tube under lateral cyclic loading. Journal of King Saud University, Engineering Sciences, 2019, 31, 32-41.	2.0	3
29	Rheology and Its Relation to Strain-Hardening Properties of Strain-Hardening Cement-Based Composites. ACI Materials Journal, 2019, 116, .	0.2	0
30	Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete. Construction and Building Materials, 2018, 168, 556-569.	7.2	242
31	Experimental study to investigate the engineering and durability performance of concrete using synthetic aggregates. Construction and Building Materials, 2018, 173, 350-358.	7.2	31
32	Mechanical properties of Hybrid steel/PVA fibers reinforced high strength concrete. MATEC Web of Conferences, 2018, 199, 11005.	0.2	6
33	Effect of Hybridization of steel fibers on the mechanical properties of high strength concrete. MATEC Web of Conferences, 2018, 199, 11006.	0.2	2
34	Visual-Based Evaluation Method for Optimizing the Dosage of PCE-Based Superplasticizer for SCC Paste and Concrete Mixtures. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	4
35	Nanosilica/silica fume. , 2018, , 461-491.		9
36	Novel lightweight concrete containing manufactured plastic aggregate. Construction and Building Materials, 2017, 148, 386-397.	7.2	111

#	Article	IF	CITATIONS
37	Review of high and ultrahigh performance cementitious composites incorporating various combinations of fibers and ultrafines. Journal of King Saud University, Engineering Sciences, 2017, 29, 339-347.	2.0	38
38	Curing optimization for strength and durability of silica fume and fuel ash concretes under hot weather conditions. Construction and Building Materials, 2017, 157, 1092-1105.	7.2	15
39	Optimized Fresh and Hardened Properties of Strain Hardening Cementitious Composites: Effect of Mineral Admixtures, Cementitious Composition, Size, and Type of Aggregates. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	17
40	Production of Recycled Plastic Aggregates and Its Utilization in Concrete. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	51
41	Utilization of Supplementary Cementitious Materials in HPC: From rheology to pore structure. KSCE Journal of Civil Engineering, 2017, 21, 889-899.	1.9	18
42	Influence of Fiber Properties on Shear Failure of Steel Fiber Reinforced Beams Without Web Reinforcement: ANN Modeling. Latin American Journal of Solids and Structures, 2016, 13, 1483-1498.	1.0	13
43	Flexural Behavior of Beams Reinforced with Steel Bars Exceeding the Nominal Yield Strength. Latin American Journal of Solids and Structures, 2016, 13, 945-963.	1.0	12
44	Optimized Fresh and Hardened Properties of Strain-Hardening Cementitious Composites: Effect of Sand Size and Workability. Journal of Materials in Civil Engineering, 2016, 28, .	2.9	17
45	Fiber–Matrix Interactions in Fiber-Reinforced Concrete: A Review. Arabian Journal for Science and Engineering, 2016, 41, 1183-1198.	1.1	48
46	Flexural behavior of high-strength concrete beams reinforced with a strain hardening cement-based composite layer. Construction and Building Materials, 2016, 125, 927-935.	7.2	27
47	Fiber-Matrix Interfacial Behavior of Hooked-End Steel Fiber-Reinforced Concrete. Journal of Materials in Civil Engineering, 2016, 28, .	2.9	14
48	Performance of optimized electric arc furnace dust-based cementitious matrix compared to conventional supplementary cementitious materials. Construction and Building Materials, 2016, 112, 210-221.	7.2	34
49	Influence of bacteria on compressive strength and permeation properties of concrete made with cement baghouse filter dust. Construction and Building Materials, 2016, 106, 461-469.	7.2	93
50	Developing and qualifying Civil Engineering Programs for ABET accreditation. Journal of King Saud University, Engineering Sciences, 2016, 28, 1-11.	2.0	29
51	Evaluation of PVA and PBI-based engineered-cementitious composites under different environments. Construction and Building Materials, 2015, 85, 109-118.	7.2	16
52	EFFECT OF NATURAL SANDS ON THE TENSILE BEHAVIOR OF SHCC UNDER DIFFERENT STRAIN RATES. Proceedings of International Structural Engineering and Construction, 2015, 2, .	0.1	1
53	The effect of curing time on the ASR expansion of different HPC composites. Construction and Building Materials, 2014, 72, 124-132.	7.2	4
54	HPC Composites Formulated to Counteract Early ASR Expansion. Journal of Materials in Civil Engineering, 2013, 25, 1951-1958.	2.9	3

#	Article	IF	CITATIONS
55	Comparison of chloride ion penetration and diffusion of high-performance concrete. KSCE Journal of Civil Engineering, 2012, 16, 779-784.	1.9	5
56	Mix proportions for HPC incorporating multi-cementitious composites using artificial neural networks. Construction and Building Materials, 2012, 28, 14-20.	7.2	28
57	Predicting properties of High Performance Concrete containing composite cementitious materials using Artificial Neural Networks. Automation in Construction, 2012, 22, 516-524.	9.8	78
58	Evaluation of non-destructive testing of high strength concrete incorporating supplementary cementitious composites. Resources, Conservation and Recycling, 2012, 61, 125-129.	10.8	23
59	Properties of natural pozzolan and its potential utilization in environmental friendly concrete. Canadian Journal of Civil Engineering, 2011, 38, 71-78.	1.3	84
60	Utilization of silica fume in concrete: Review of durability properties. Resources, Conservation and Recycling, 2011, 57, 30-35.	10.8	232
61	Supplementary Cementing Materials. Engineering Materials, 2011, , .	0.6	185
62	Nanostructure and Microstructure of Cement Concrete Incorporating Multicementitious Composites. Transportation Research Record, 2010, 2141, 21-27.	1.9	22
63	Evaluation and Performance of Repair Materials for Rehabilitation of Concrete Structures. Advanced Materials Research, 2010, 163-167, 3820-3825.	0.3	0
64	Assessment and Evaluation of the Civil Engineering B.Sc. Program – King Saud University. , 2010, , .		1
65	Development of Engineering Program for ABET Accreditation: Case Study of Civil Engineering B.Sc. Program at King Saud University. , 2010, , .		0
66	lsoresponses for strength, permeability and porosity of high performance mortar. Building and Environment, 2003, 38, 1051-1056.	6.9	38
67	Permeation of High Performance Concrete. Journal of Materials in Civil Engineering, 2003, 15, 84-92.	2.9	56
68	Factors affecting the thermal properties of concrete and applicability of its prediction models. Building and Environment, 2002, 37, 607-614.	6.9	263
69	Strength, permeability, and carbonation of high-performance concrete. Cement and Concrete Research, 2002, 32, 123-131.	11.0	172
70	Porosity and strength of PFA/SF/OPC ternary blended paste. Cement and Concrete Research, 2000, 30, 1225-1229.	11.0	53
71	Comparison of Diffusion and Chloride Ion Penetration of High-Performance Concrete. Advanced Materials Research, 0, 168-170, 2171-2177.	0.3	1
72	Carbonation of High Strength Concrete. Applied Mechanics and Materials, 0, 117-119, 186-191.	0.2	2

5

#	Article	IF	CITATIONS
73	Direct Tensile Strength Measurement of Concrete. Applied Mechanics and Materials, 0, 117-119, 9-14.	0.2	6
74	Nanosilica and its Future Prospects in Concrete. Advanced Materials Research, 0, 658, 50-55.	0.3	3