
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5841153/publications.pdf Version: 2024-02-01

LUNFENC LUL

#	Article	IF	CITATIONS
1	Global Atmospheric Emissions of Polycyclic Aromatic Hydrocarbons from 1960 to 2008 and Future Predictions. Environmental Science & Technology, 2013, 47, 6415-6424.	4.6	661
2	Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage. Atmospheric Environment, 2011, 45, 2284-2296.	1.9	472
3	The rise of South–South trade and its effect on global CO2 emissions. Nature Communications, 2018, 9, 1871.	5.8	328
4	Black Carbon Emissions in China from 1949 to 2050. Environmental Science & Technology, 2012, 46, 7595-7603.	4.6	252
5	Quantification of Global Primary Emissions of PM _{2.5} , PM ₁₀ , and TSP from Combustion and Industrial Process Sources. Environmental Science & Technology, 2014, 48, 13834-13843.	4.6	219
6	Interaction between urban heat island and urban pollution island during summer in Berlin. Science of the Total Environment, 2018, 636, 818-828.	3.9	214
7	Residential solid fuel emissions contribute significantly to air pollution and associated health impacts in China. Science Advances, 2020, 6, .	4.7	181
8	Urbanization-induced population migration has reduced ambient PM _{2.5} concentrations in China. Science Advances, 2017, 3, e1700300.	4.7	161
9	Impacts of air pollutants from rural Chinese households under the rapid residential energy transition. Nature Communications, 2019, 10, 3405.	5.8	158
10	Energy and air pollution benefits of household fuel policies in northern China. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16773-16780.	3.3	152
11	Exposure to ambient black carbon derived from a unique inventory and high-resolution model. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2459-2463.	3.3	148
12	Evaluation of factors controlling long-range transport of black carbon to the Arctic. Journal of Geophysical Research, 2011, 116, .	3.3	144
13	Tracing Primary PM _{2.5} emissions via Chinese supply chains. Environmental Research Letters, 2015, 10, 054005.	2.2	130
14	Global lung cancer risk from PAH exposure highly depends on emission sources and individual susceptibility. Scientific Reports, 2014, 4, 6561.	1.6	122
15	Trend in Global Black Carbon Emissions from 1960 to 2007. Environmental Science & Technology, 2014, 48, 6780-6787.	4.6	114
16	Improvement of a Global High-Resolution Ammonia Emission Inventory for Combustion and Industrial Sources with New Data from the Residential and Transportation Sectors. Environmental Science & Technology, 2017, 51, 2821-2829.	4.6	113
17	Estimating household air pollution exposures and health impacts from space heating in rural China. Environment International, 2018, 119, 117-124.	4.8	107
18	Impacts of 21st century climate change on global air pollution-related premature mortality. Climatic Change, 2013, 121, 239-253.	1.7	91

JUNFENG LIU

#	Article	IF	CITATIONS
19	The Slowdown in Global Air-Pollutant Emission Growth and Driving Factors. One Earth, 2019, 1, 138-148.	3.6	91
20	Evaluating inter-continental transport of fine aerosols:(2) Global health impact. Atmospheric Environment, 2009, 43, 4339-4347.	1.9	86
21	Temporal and spatial trends of residential energy consumption and air pollutant emissions in China. Applied Energy, 2013, 106, 17-24.	5.1	85
22	The consumption-based black carbon emissions of China's megacities. Journal of Cleaner Production, 2017, 161, 1275-1282.	4.6	80
23	Globalization and pollution: tele-connecting local primary PM _{2.5} emissions to global consumption. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160380.	1.0	77
24	Modeling temporal variations in global residential energy consumption and pollutant emissions. Applied Energy, 2016, 184, 820-829.	5.1	73
25	The impact of domestic and foreign trade on energy-related PM emissions in Beijing. Applied Energy, 2016, 184, 853-862.	5.1	64
26	Control of both PM2.5 and O3 in Beijing-Tianjin-Hebei and the surrounding areas. Atmospheric Environment, 2020, 224, 117259.	1.9	63
27	Global organic carbon emissions from primary sources from 1960 to 2009. Atmospheric Environment, 2015, 122, 505-512.	1.9	60
28	Evaluating inter-continental transport of fine aerosols: (1) Methodology, global aerosol distribution and optical depth. Atmospheric Environment, 2009, 43, 4327-4338.	1.9	59
29	Interprovincial Reliance for Improving Air Quality in China: A Case Study on Black Carbon Aerosol. Environmental Science & Technology, 2016, 50, 4118-4126.	4.6	59
30	Global in loud production of secondary organic aerosols: Implementation of a detailed chemical mechanism in the GFDL atmospheric model AM3. Journal of Geophysical Research, 2012, 117, .	3.3	57
31	Triphenyl Phosphate at Environmental Levels Retarded Ovary Development and Reduced Egg Production in Japanese Medaka (<i>Oryzias latipes</i>). Environmental Science & Technology, 2019, 53, 14709-14715.	4.6	55
32	The contribution of the Beijing, Tianjin and Hebei region's iron and steel industry to local air pollution in winter. Environmental Pollution, 2019, 245, 1095-1106.	3.7	54
33	Effects of canyon geometry on the distribution of traffic-related air pollution in a large urban area: Implications of a multi-canyon air pollution dispersion model. Atmospheric Environment, 2017, 165, 111-121.	1.9	52
34	Multi-objective analysis of the co-mitigation of CO2 and PM2.5 pollution by China's iron and steel industry. Journal of Cleaner Production, 2018, 185, 331-341.	4.6	51
35	Analysis of seasonal and interannual variability in transpacific transport. Journal of Geophysical Research, 2005, 110, .	3.3	49
36	Distinguishing Emission-Associated Ambient Air PM _{2.5} Concentrations and Meteorological Factor-Induced Fluctuations. Environmental Science & Technology, 2018, 52, 10416-10425.	4.6	48

#	Article	IF	CITATIONS
37	The possible contribution of the periodic emissions from farmers' activities in the North China Plain to atmospheric water-soluble ions in Beijing. Atmospheric Chemistry and Physics, 2016, 16, 10097-10109.	1.9	47
38	Deep Learning Prediction of Polycyclic Aromatic Hydrocarbons in the High Arctic. Environmental Science & Technology, 2019, 53, 13238-13245.	4.6	41
39	The impact of environmental protection tax on sectoral and spatial distribution of air pollution emissions in China. Environmental Research Letters, 2019, 14, 054013.	2.2	41
40	A WRF-Chem model-based future vehicle emission control policy simulation and assessment for the Beijing-Tianjin-Hebei region, China. Journal of Environmental Management, 2020, 253, 109751.	3.8	35
41	Temporal variation of urban aerosol pollution island and its relationship with urban heat island. Atmospheric Research, 2020, 241, 104957.	1.8	35
42	Origin and Radiative Forcing of Black Carbon Aerosol: Production and Consumption Perspectives. Environmental Science & Technology, 2018, 52, 6380-6389.	4.6	34
43	Potential influence of inter-continental transport of sulfate aerosols on air quality. Environmental Research Letters, 2007, 2, 045029.	2.2	32
44	Potential health benefits of controlling dust emissions in Beijing. Environmental Pollution, 2016, 213, 850-859.	3.7	32
45	Inhalation exposure and risk of polycyclic aromatic hydrocarbons (PAHs) among the rural population adopting wood gasifier stoves compared to different fuel-stove users. Atmospheric Environment, 2016, 147, 485-491.	1.9	32
46	Trend and driving forces of Beijing's black carbon emissions from sectoral perspectives. Journal of Cleaner Production, 2016, 112, 1272-1281.	4.6	32
47	Interannual variability of summertime aerosol optical depth over East Asia during 2000–2011: a potential influence from El Niño Southern Oscillation. Environmental Research Letters, 2013, 8, 044034.	2.2	31
48	Effects of transâ€Eurasian transport of air pollutants on surface ozone concentrations over Western China. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,338.	1.2	31
49	PM2.5 reductions in Chinese cities from 2013 to 2019 remain significant despite the inflating effects of meteorological conditions. One Earth, 2021, 4, 448-458.	3.6	31
50	Effect of northern boreal forest fires on PAH fluctuations across the arctic. Environmental Pollution, 2020, 261, 114186.	3.7	30
51	The cascade of global trade to large climate forcing over the Tibetan Plateau glaciers. Nature Communications, 2019, 10, 3281.	5.8	28
52	Health effects of banning beehive coke ovens and implementation of the ban in China. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2693-2698.	3.3	27
53	Investigating the Urban Air Quality Effects of Cool Walls and Cool Roofs in Southern California. Environmental Science & Technology, 2019, 53, 7532-7542.	4.6	25
54	Non-intrusive reduced order model of urban airflow with dynamic boundary conditions. Building and Environment, 2021, 187, 107397.	3.0	23

#	Article	IF	CITATIONS
55	Estimating the average time for inter-continental transport of air pollutants. Geophysical Research Letters, 2005, 32, .	1.5	21
56	EnsembleGraph: Interactive visual analysis of spatiotemporal behaviors in ensemble simulation data. , 2016, , .		20
57	Differentiated-Rate Clean Heating Strategy with Superior Environmental and Health Benefits in Northern China. Environmental Science & Technology, 2020, 54, 13458-13466.	4.6	20
58	Influences of planetary boundary layer mixing parameterization on summertime surface ozone concentration and dry deposition over North China. Atmospheric Environment, 2019, 218, 116950.	1.9	19
59	A combined Arctic-tropical climate pattern controlling the inter-annual climate variability of wintertime PM2.5 over the North China Plain. Environmental Pollution, 2019, 245, 607-615.	3.7	19
60	Improving the Imbalanced Global Supply Chain of Phosphorus Fertilizers. Earth's Future, 2019, 7, 638-651.	2.4	18
61	Analysis of multiple drivers of air pollution emissions in China via interregional trade. Journal of Cleaner Production, 2020, 244, 118507.	4.6	18
62	Global Fire Forecasts Using Both Large cale Climate Indices and Local Meteorological Parameters. Global Biogeochemical Cycles, 2019, 33, 1129-1145.	1.9	17
63	High-resolution simulation of local traffic-related NOx dispersion and distribution in a complex urban terrain. Environmental Pollution, 2020, 263, 114390.	3.7	17
64	Synergistic Health Benefits of Household Stove Upgrading and Energy Switching in Rural China. Environmental Science & Technology, 2021, 55, 14567-14575.	4.6	17
65	Comparison of the impact of China's railway investment and road investment on the economy and air pollution emissions. Journal of Cleaner Production, 2021, 293, 126100.	4.6	16
66	Air quality and climate responses to anthropogenic black carbon emission changes from East Asia, North America and Europe. Atmospheric Environment, 2015, 120, 262-276.	1.9	15
67	Impacts of Potential China's Environmental Protection Tax Reforms on Provincial Air Pollution Emissions and Economy. Earth's Future, 2020, 8, e2019EF001467.	2.4	15
68	Substantial accumulation of mercury in the deepest parts of the ocean and implications for the environmental mercury cycle. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
69	Spatiotemporal variability and driving factors of ground-level summertime ozone pollution over eastern China. Atmospheric Environment, 2021, 265, 118686.	1.9	14
70	Urban residential energy switching in China between 1980 and 2014 prevents 2.2 million premature deaths. One Earth, 2021, 4, 1602-1613.	3.6	14
71	Globalization-Driven Industry Relocation Significantly Reduces Arctic PAH Contamination. Environmental Science & Technology, 2022, 56, 145-154.	4.6	14
72	Long-Lived Species Enhance Summertime Attribution of North American Ozone to Upwind Sources. Environmental Science & Technology, 2017, 51, 5017-5025.	4.6	13

#	Article	IF	CITATIONS
73	Interprovincial trade driven relocation of polycyclic aromatic hydrocarbons and lung cancer risk in China. Journal of Cleaner Production, 2021, 280, 124368.	4.6	13
74	Potential impacts of urban land expansion on Asian airborne pollutant outflows. Journal of Geophysical Research D: Atmospheres, 2017, 122, 7646-7663.	1.2	12
75	The impacts of the trade liberalization of environmental goods on power system and CO2 emissions. Energy Policy, 2020, 140, 111173.	4.2	12
76	Unsupervised PM2.5 anomalies in China induced by the COVID-19 epidemic. Science of the Total Environment, 2021, 795, 148807.	3.9	12
77	Analysis of wintertime O3 variability using a random forest model and high-frequency observations in Zhangjiakou—an area with background pollution level of the North China Plain. Environmental Pollution, 2020, 262, 114191.	3.7	11
78	Influence of atmospheric in-cloud aqueous-phase chemistry on the global simulation of SO ₂ in CESM2. Atmospheric Chemistry and Physics, 2021, 21, 16093-16120.	1.9	10
79	An inter-comparative evaluation of PKU-FUEL global SO2 emission inventory. Science of the Total Environment, 2020, 722, 137755.	3.9	9
80	On-site measured emission factors of polycyclic aromatic hydrocarbons for different types of marine vessels. Environmental Pollution, 2022, 297, 118782.	3.7	9
81	A potential large and persistent black carbon forcing over Northern Pacific inferred from satellite observations. Scientific Reports, 2017, 7, 43429.	1.6	7
82	Impacts of chlorine emissions on secondary pollutants in China. Atmospheric Environment, 2021, 246, 118177.	1.9	7
83	Fast simulation of high resolution urban wind fields at city scale. Urban Climate, 2021, 39, 100941.	2.4	7
84	Source attribution of black carbon affecting regional air quality, premature mortality and glacial deposition in 2000. Atmospheric Environment, 2019, 206, 144-155.	1.9	5
85	Air quality and health impacts from the updated industrial emission standards in China. Environmental Research Letters, 2019, 14, 124058.	2.2	5
86	Mitigation of air pollutant impacts on rice yields in China by sector. Environmental Research Letters, 2022, 17, 054037.	2.2	5
87	PM _{2.5} -Associated Health Impacts of Beehive Coke Oven Ban in China. Environmental Science & Technology, 2019, 53, 11337-11344.	4.6	4
88	The Direct Radiative Forcing Impact of Agricultureâ€Emitted Black Carbon Associated With India's Green Revolution. Earth's Future, 2021, 9, e2021EF001975.	2.4	4
89	Source contributions and drivers of physiological and psychophysical cobenefits from major air pollution control actions in North China. Environmental Science & Technology, 2022, 56, 2225-2235.	4.6	4
90	Tropospheric Ozone Perturbations Induced by Urban Land Expansion in China from 1980 to 2017. Environmental Science & Technology, 2022, 56, 6978-6987.	4.6	4

#	Article	IF	CITATIONS
91	The roles of the metallurgy, nonmetal products and chemical industry sectors in air pollutant emissions in China. Environmental Research Letters, 2018, 13, 084013.	2.2	3
92	High PM _{2.5} Emission from Typical Old, Small Fishing Vessels in China. Environmental Science and Technology Letters, 2022, 9, 199-204.	3.9	3
93	Reinforcement of Secondary Circulation by Aerosol Feedback and PM 2.5 Vertical Exchange in the Atmospheric Boundary Layer. Geophysical Research Letters, 2021, 48, e2021GL094465.	1.5	2
94	Direct and Inverse Reduced-Form Models for Reciprocal Calculation of BC Emissions and Atmospheric Concentrations. Environmental Science & amp; Technology, 2021, 55, 10300-10309.	4.6	0
95	Unexpected Methane Emissions From Old Small Fishing Vessels in China. Frontiers in Environmental Science, 2022, 10, .	1.5	0