Jarrod A Dudakov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/584107/publications.pdf Version: 2024-02-01

IAPPOD A DUDAKOV

#	Article	IF	CITATIONS
1	Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature, 2015, 528, 560-564.	13.7	818
2	Interleukin-22: Immunobiology and Pathology. Annual Review of Immunology, 2015, 33, 747-785.	9.5	679
3	Intestinal Blautia Is Associated with Reduced Death from Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2015, 21, 1373-1383.	2.0	619
4	Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. Journal of Experimental Medicine, 2012, 209, 903-911.	4.2	552
5	Interleukin-22 Protects Intestinal Stem Cells from Immune-Mediated Tissue Damage and Regulates Sensitivity to Graft versus Host Disease. Immunity, 2012, 37, 339-350.	6.6	509
6	Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Science Translational Medicine, 2016, 8, 339ra71.	5.8	404
7	Interleukin-22 Drives Endogenous Thymic Regeneration in Mice. Science, 2012, 336, 91-95.	6.0	334
8	Logic-Gated ROR1 Chimeric Antigen Receptor Expression Rescues T Cell-Mediated Toxicity to Normal Tissues and Enables Selective Tumor Targeting. Cancer Cell, 2019, 35, 489-503.e8.	7.7	218
9	Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity. Nature Medicine, 2017, 23, 242-249.	15.2	179
10	Nrf2 regulates haematopoietic stem cell function. Nature Cell Biology, 2013, 15, 309-316.	4.6	173
11	Thymus: the next (re)generation. Immunological Reviews, 2016, 271, 56-71.	2.8	140
12	RIC-I/MAVS and STING signaling promote gut integrity during irradiation- and immune-mediated tissue injury. Science Translational Medicine, 2017, 9, .	5.8	114
13	The role of sex steroids and gonadectomy in the control of thymic involution. Cellular Immunology, 2008, 252, 122-138.	1.4	112
14	Impact of niche aging on thymic regeneration and immune reconstitution. Seminars in Immunology, 2007, 19, 331-340.	2.7	98
15	Sex steroid blockade enhances thymopoiesis by modulating Notch signaling. Journal of Experimental Medicine, 2014, 211, 2341-2349.	4.2	95
16	Production of BMP4 by endothelial cells is crucial for endogenous thymic regeneration. Science Immunology, 2018, 3, .	5.6	93
17	Luteinizing Hormone-Releasing Hormone Enhances T Cell Recovery following Allogeneic Bone Marrow Transplantation. Journal of Immunology, 2009, 182, 5846-5854.	0.4	75
18	Abrogation of donor T-cell IL-21 signaling leads to tissue-specific modulation of immunity and separation of GVHD from GVL. Blood, 2011, 118, 446-455.	0.6	68

JARROD A DUDAKOV

#	Article	IF	CITATIONS
19	Sex Steroid Ablation Enhances Hematopoietic Recovery following Cytotoxic Antineoplastic Therapy in Aged Mice. Journal of Immunology, 2009, 183, 7084-7094.	0.4	56
20	Sex Steroid Ablation Enhances Immune Reconstitution Following Cytotoxic Antineoplastic Therapy in Young Mice. Journal of Immunology, 2010, 184, 6014-6024.	0.4	56
21	Loss of thymic innate lymphoid cells leads to impaired thymopoiesis in experimental graft-versus-host disease. Blood, 2017, 130, 933-942.	0.6	55
22	Thymic Involution: Where Endocrinology Meets Immunology. NeuroImmunoModulation, 2011, 18, 281-289.	0.9	50
23	The central nervous system is a target of acute graft versus host disease in mice. Blood, 2013, 121, 1906-1910.	0.6	49
24	Withdrawal of Sex Steroids Reverses Age- and Chemotherapy-Related Defects in Bone Marrow Lymphopoiesis. Journal of Immunology, 2009, 182, 6247-6260.	0.4	46
25	Clinical strategies to enhance thymic recovery after allogeneic hematopoietic stem cell transplantation. Immunology Letters, 2013, 155, 31-35.	1.1	44
26	When the Damage Is Done: Injury and Repair in Thymus Function. Frontiers in Immunology, 2020, 11, 1745.	2.2	42
27	PTPN2 regulates T cell lineage commitment and αβ versus γδ specification. Journal of Experimental Medicine, 2017, 214, 2733-2758.	4.2	38
28	Suppression of luteinizing hormone enhances HSC recovery after hematopoietic injury. Nature Medicine, 2018, 24, 239-246.	15.2	34
29	Feeding the fire: the role of defective bone marrow function in exacerbating thymic involution. Trends in Immunology, 2010, 31, 191-198.	2.9	33
30	Enhanced Hematopoietic Stem Cell Function Mediates Immune Regeneration following Sex Steroid Blockade. Stem Cell Reports, 2015, 4, 445-458.	2.3	33
31	Behavioural traits propagate across generations via segregated iterative-somatic and gametic epigenetic mechanisms. Nature Communications, 2016, 7, 11492.	5.8	31
32	Dynamics of thymus function and T cell receptor repertoire breadth in health and disease. Seminars in Immunopathology, 2021, 43, 119-134.	2.8	29
33	Strategies for reconstituting and boosting T cell-based immunity following haematopoietic stem cell transplantation: pre-clinical and clinical approaches. Seminars in Immunopathology, 2008, 30, 457-477.	2.8	28
34	Nrf2 regulates CD4+ T cell–induced acute graft-versus-host disease in mice. Blood, 2018, 132, 2763-2774.	0.6	26
35	WNT Signaling Suppression in the Senescent Human Thymus. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 273-281.	1.7	23
36	Extrathymic development of murine T cells after bone marrow transplantation. Journal of Clinical Investigation, 2012, 122, 4716-4726.	3.9	19

JARROD A DUDAKOV

#	Article	IF	CITATIONS
37	Greater than the sum of their parts: Combination strategies for immune regeneration following allogeneic hematopoietic stem cell transplantation. Best Practice and Research in Clinical Haematology, 2011, 24, 467-476.	0.7	18
38	Stem cells—meet immunity. Journal of Molecular Medicine, 2009, 87, 1061-1069.	1.7	10
39	Activation of the zinc-sensing receptor GPR39 promotes T-cell reconstitution after hematopoietic cell transplant in mice. Blood, 2022, 139, 3655-3666.	0.6	10
40	Early age–related atrophy of cutaneous lymph nodes precipitates an early functional decline in skin immunity in mice with aging. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121028119.	3.3	7
41	Quantitative restoration of immune defense in old animals determined by naive antigenâ€specific CD8 Tâ€cell numbers. Aging Cell, 2022, 21, e13582.	3.0	6
42	Attenuation of apoptotic cell detection triggers thymic regeneration after damage. Cell Reports, 2021, 37, 109789.	2.9	5
43	Adding Insult to Injury: Improving the Regenerative Capacity of the Aged Thymus Following Clinically Induced Damage. , 2019, , 273-294.		4
44	Host-Derived IL-22 Limits Graft Versus Host Disease and Protects the Intestinal Stem Cell Niche. Blood, 2011, 118, 309-309.	0.6	4
45	Zinc Treatment Stimulates Thymic Regeneration after Bone Marrow Transplant. Blood, 2019, 134, 4422-4422.	0.6	3
46	Supply-side economics finds the thymus. Blood, 2011, 118, 1715-1716.	0.6	2
47	Zinc Supplementation Improves T Cell Reconstitution after Allogeneic HSCT By Stimulating Endogenous Pathways of Thymic Regeneration. Blood, 2018, 132, 3321-3321.	0.6	2
48	Eomesodermin Regulates The Early Activation Of Alloreactive CD4 T Cells and Is Critical For Both Gvh and GVL Responses. Blood, 2013, 122, 133-133.	0.6	2
49	RIG-I-Induced Type I IFNs Promote Regeneration of the Intestinal Stem Cell Compartment during Acute Tissue Damage. Blood, 2015, 126, 3072-3072.	0.6	2
50	Strategies to improve post-transplant immunity. , 2013, , 123-142.		1
51	Thymic Regeneration in Mice and Humans Following Sex Steroid Ablation. , 2009, , 1571-1609.		1
52	Sex Steroid Blockade Enhances Thymopoiesis By Modulating Notch Signaling. Blood, 2013, 122, 291-291.	0.6	1
53	CD19-Targeted Donor T Cells Exert Potent Graft Versus Lymphoma Activity and Attenuated Gvhd. Blood, 2012, 120, 451-451.	0.6	1
54	IL-22 Administration Decreases Intestinal Gvhd Pathology, Increases Intestinal Stem Cell Recovery, and Enhances Immune Reconstitution Following Allogeneic Hematopoietic Transplantation. Blood, 2013, 122, 290-290.	0.6	1

JARROD A DUDAKOV

#	Article	IF	CITATIONS
55	Homeostatic Regulation of Apoptosis Governs Thymus Regeneration. Blood, 2019, 134, 587-587.	0.6	1
56	Damage-Induced Pyroptotic Cell Death Facilitates Regeneration of the Thymus. Blood, 2020, 136, 28-28.	0.6	1
57	Strategies to Improve Posttransplant Immunity. , 2019, , 89-105.		Ο
58	Gvhd, Hematopoietic Dysfunction, and Post-Transplant Immune Deficiency: Loss of Marrow Function Leads to Ineffective Extramedullary Hematopoiesis, However Lymphoid Reconstitution Is Restored by the Synergistic Effects of KGF, Sex Steroid Ablation, and Precursor T Cell Adoptive Therapy Blood, 2010, 116, 1468-1468.	0.6	0
59	Innate Lymphoid Cell-Derived IL-22 Mediates Endogenous Thymic Repair Under the Control of IL-23. Blood, 2011, 118, 143-143.	0.6	Ο
60	The Central Nervous System Is a Target Organ of Acute Graft-Versus-Host Disease. Blood, 2011, 118, 1895-1895.	0.6	0
61	Age-Related Thymic Involution Triggers Intrinsic Regeneration Pathways but They Remain Ineffective for Its Renewal. Blood, 2012, 120, 1043-1043.	0.6	Ο
62	Intrathymic Innate Lymphoid Cells: Long-Lived Mediators Of Immune Regeneration. Blood, 2013, 122, 289-289.	0.6	0
63	Production of BMP4 By Endothelial Cells Is Crucial for Endogenous Thymic Regeneration. Blood, 2015, 126, 637-637.	0.6	Ο
64	Suppression of Luteinizing Hormone Enhances HSC Recovery after Hematopoietic Injuries. Blood, 2016, 128, 370-370.	0.6	0