Diego Fernando Roa Acosta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5840851/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physical and Paste Properties Comparison of Four Snacks Produced by High Protein Quinoa Flour Extrusion Cooking. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	14
2	Physicochemical Characterization of Quinoa (Chenopodium quinoa cv. Nariño) Co-products Obtained by Wet Milling. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	2
3	Preliminary Characterization of Structural and Rheological Behavior of the Quinoa Hyperprotein-Defatted Flour. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	4
4	Effects of Altitudinal Gradient on Physicochemical and Rheological Potential of Quinoa Cultivars. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	4
5	Structural Characterization and Antioxidant Capacity of Quinoa Cultivars Using Techniques of FT-MIR and UHPLC/ESI-Orbitrap MS Spectroscopy. Plants, 2021, 10, 2159.	1.6	17
6	Hyper-protein quinoa flour (Chenopodium Quinoa Wild): Monitoring and study of structural and rheological properties. LWT - Food Science and Technology, 2020, 121, 108952.	2.5	17
7	Quinoa (Chenopodium quinoa Willd.) and its relationship with agroclimatic characteristics: A Colombian perspective. Chilean Journal of Agricultural Research, 2020, 80, 290-302.	0.4	18
8	Chlorophyll fluorescence and its relationship with physiological stress in Chenopodium quinoa Willd Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2020, 48, 1742-1755.	0.5	4
9	Structural and thermal properties of the amaranth starch granule obtained by high-impact wet milling. International Journal of Food Engineering, 2020, 16, .	0.7	6
10	Modelado del requerimiento energético y del tamaño de partÃcula en la molienda de bolas del grano de amaranto. Revista U D C A Actualidad & Divulgación CientÃfica, 2019, 22, .	0.1	1
11	Encapsulation and Stabilization of β-Carotene in Amaranth Matrices Obtained by Dry and Wet Assisted Ball Milling. Food and Bioprocess Technology, 2017, 10, 512-521.	2.6	10
12	Effect of ball milling energy on rheological and thermal properties of amaranth flour. Journal of Food Science and Technology, 2015, 52, 8389-8394.	1.4	24
13	Amaranth Milling Strategies and Fraction Characterization by FT-IR. Food and Bioprocess Technology, 2014, 7, 711-718.	2.6	29
14	Ball Milling of Amaranth Starch-Enriched Fraction. Changes on Particle Size, Starch Crystallinity, and Functionality as a Function of Milling Energy. Food and Bioprocess Technology, 2014, 7, 2723-2731.	2.6	36
15	Antioxidant potential of extruded snacks enriched with hyper-protein quinoa flour and vegetable extracts. Food Science and Technology, 0, 42, .	0.8	5

2