Shaohu Sheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5840441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Accessibility of ENaC extracellular domain central core residues. Journal of Biological Chemistry, 2022, 298, 101860.	3.4	4
2	Salt sensitivity of volume and blood pressure in a mouse with globally reduced ENaC γ-subunit expression. American Journal of Physiology - Renal Physiology, 2021, 321, F705-F714.	2.7	8
3	Intercalated cell BKÎ \pm subunit is required for flow-induced K+ secretion. JCI Insight, 2020, 5, .	5.0	28
4	Analyses of epithelial Na+ channel variants reveal that an extracellular β-ball domain critically regulates ENaC gating. Journal of Biological Chemistry, 2019, 294, 16765-16775.	3.4	4
5	Palm Domain Hydrophobic Residues and ENaC Gating. FASEB Journal, 2019, 33, 862.25.	0.5	0
6	Thumb domains of the three epithelial Na+ channel subunits have distinct functions. Journal of Biological Chemistry, 2018, 293, 17582-17592.	3.4	6
7	Novel Lossâ€ofâ€function Variants in the Epithelial Na + Channel Extracellular Domain. FASEB Journal, 2018, 32, 624.14.	0.5	0
8	The Epithelial Sodium Channel Is a Modifier of the Long-Term Nonprogressive Phenotype Associated with F508del CFTR Mutations. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 711-720.	2.9	27
9	Human epithelial Na ⁺ channel missense variants identified in the GenSalt study alter channel activity. American Journal of Physiology - Renal Physiology, 2016, 311, F908-F914.	2.7	21
10	Functional Roles of Clusters of Hydrophobic and Polar Residues in the Epithelial Na+ Channel Knuckle Domain. Journal of Biological Chemistry, 2015, 290, 25140-25150.	3.4	11
11	Deletion of α-subunit exon 11 of the epithelial Na ⁺ channel reveals a regulatory module. American Journal of Physiology - Renal Physiology, 2014, 306, F561-F567.	2.7	10
12	Blood pressure and amiloride-sensitive sodium channels in vascular and renal cells. Nature Reviews Nephrology, 2014, 10, 146-157.	9.6	97
13	Epithelial Na+ Channels. , 2013, , 983-1017.		3
14	Gain-of-function variant of the human epithelial sodium channel. American Journal of Physiology - Renal Physiology, 2013, 304, F207-F213.	2.7	24
15	Probing the Structural Basis of Zn2+ Regulation of the Epithelial Na+ Channel. Journal of Biological Chemistry, 2012, 287, 35589-35598.	3.4	13
16	Structural Basis of Zn2+ Activation of the Epithelial Na+ Channel. FASEB Journal, 2012, 26, 1068.2.	0.5	1
17	External Cu2+ Inhibits Human Epithelial Na+ Channels by Binding at a Subunit Interface of Extracellular Domains. Journal of Biological Chemistry, 2011, 286, 27436-27446.	3.4	26
18	Base of the Thumb Domain Modulates Epithelial Sodium Channel Gating. Journal of Biological Chemistry, 2011, 286, 14753-14761.	3.4	43

Shaohu Sheng

#	Article	IF	CITATIONS
19	Extracellular Allosteric Regulatory Subdomain within the Î ³ Subunit of the Epithelial Na+ Channel. Journal of Biological Chemistry, 2010, 285, 26088-26096.	3.4	33
20	Transition metals inhibit epithelial sodium channels via distinct mechanisms. FASEB Journal, 2010, 24, 611.24.	0.5	0
21	An extracellular subdomain of the epithelial Na+ channel gamma subunit confers Na+ selfâ€inhibition response. FASEB Journal, 2010, 24, 611.25.	0.5	0
22	Novel Determinants of Epithelial Sodium Channel Gating within Extracellular Thumb Domains. Journal of Biological Chemistry, 2009, 284, 7756-7765.	3.4	44
23	Epithelial Na+ Channels. , 2008, , 743-768.		9
24	Functional Role of Extracellular Loop Cysteine Residues of the Epithelial Na+ Channel in Na+ Self-inhibition. Journal of Biological Chemistry, 2007, 282, 20180-20190.	3.4	53
25	Epithelial Na+ Channels Are Fully Activated by Furin- and Prostasin-dependent Release of an Inhibitory Peptide from the γ-Subunit. Journal of Biological Chemistry, 2007, 282, 6153-6160.	3.4	277
26	Extracellular loop cysteine residues of gamma epithelial Na+ channel subunit and Na+ selfâ€inhibition. FASEB Journal, 2007, 21, A954.	0.5	0
27	Biophysical Approach to Determine the Subunit Stoichiometry of the Epithelial Sodium Channel Using the Xenopus laevis Oocyte Expression System. , 2006, 337, 53-63.		1
28	Furin cleavage activates the epithelial Na+ channel by relieving Na+ self-inhibition. American Journal of Physiology - Renal Physiology, 2006, 290, F1488-F1496.	2.7	143
29	The Epithelial Na+ Channel Is Inhibited by a Peptide Derived from Proteolytic Processing of Its α Subunit. Journal of Biological Chemistry, 2006, 281, 18901-18907.	3.4	127
30	Mutations in the Pore Region Modify Epithelial Sodium Channel Gating by Shear Stress. Journal of Biological Chemistry, 2005, 280, 4393-4401.	3.4	62
31	Side Chain Orientation of Residues Lining the Selectivity Filter of Epithelial Na+ Channels. Journal of Biological Chemistry, 2005, 280, 8513-8522.	3.4	30
32	On the Interaction between Amiloride and Its Putative α-Subunit Epithelial Na+ Channel Binding Site. Journal of Biological Chemistry, 2005, 280, 26206-26215.	3.4	32
33	Functional Polymorphism in the Carboxyl Terminus of the α-Subunit of the Human Epithelial Sodium Channel. Journal of Biological Chemistry, 2004, 279, 23900-23907.	3.4	43
34	Extracellular Zn2+ Activates Epithelial Na+ Channels by Eliminating Na+ Self-inhibition. Journal of Biological Chemistry, 2004, 279, 31687-31696.	3.4	47
35	Epithelial Na+ Channels Are Activated by Laminar Shear Stress. Journal of Biological Chemistry, 2004, 279, 4120-4126.	3.4	139
36	Extracellular Histidine Residues Crucial for Na+ Self-inhibition of Epithelial Na+ Channels. Journal of Biological Chemistry, 2004, 279, 9743-9749.	3.4	72

Shaohu Sheng

#	Article	IF	CITATIONS
37	Asymmetric Organization of the Pore Region of the Epithelial Sodium Channel. Journal of Biological Chemistry, 2003, 278, 13867-13874.	3.4	32
38	Multiple epithelial Na+ channel domains participate in subunit assembly. American Journal of Physiology - Renal Physiology, 2003, 285, F600-F609.	2.7	18
39	External Nickel Inhibits Epithelial Sodium Channel by Binding to Histidine Residues within the Extracellular Domains of I± and γ Subunits and Reducing Channel Open Probability. Journal of Biological Chemistry, 2002, 277, 50098-50111.	3.4	62
40	Epithelial Na ⁺ channels are regulated by flow. American Journal of Physiology - Renal Physiology, 2001, 280, F1010-F1018.	2.7	193
41	Second Transmembrane Domains of ENaC Subunits Contribute to Ion Permeation and Selectivity. Journal of Biological Chemistry, 2001, 276, 44091-44098.	3.4	43
42	Epithelial Sodium Channel Pore Region. Journal of Biological Chemistry, 2001, 276, 1326-1334.	3.4	65
43	Characterization of the Selectivity Filter of the Epithelial Sodium Channel. Journal of Biological Chemistry, 2000, 275, 8572-8581.	3.4	80
44	Chapter 3 Subunit Stoichiometry of Heterooligomeric and Homooligomeric Epithelial Sodium Channels. Current Topics in Membranes, 1999, , 37-48.	0.9	1
45	Subunit Stoichiometry of the Epithelial Sodium Channel. Journal of Biological Chemistry, 1998, 273, 13469-13474.	3.4	201