Vien Vo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5839954/publications.pdf

Version: 2024-02-01

		430754	501076
37	837	18	28
papers	citations	h-index	g-index
38	38	38	908
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Oneâ€pot synthesis of SnS ₂ Nanosheets supported on gâ€C ₃ N ₄ as high capacity and stable cycling anode for sodiumâ€ion batteries. International Journal of Energy Research, 2022, 46, 3233-3248.	2.2	6
2	A facile synthesis of SnS2/g-C3N4 S-scheme heterojunction photocatalyst with enhanced photocatalytic performance. Journal of Science: Advanced Materials and Devices, 2022, 7, 100402.	1.5	4
3	Facile construction of S-scheme SnO2/g-C3N4 photocatalyst for improved photoactivity. Chemosphere, 2022, 289, 133120.	4.2	126
4	Construction of S-scheme CdS/g-C3N4 nanocomposite with improved visible-light photocatalytic degradation of methylene blue. Environmental Research, 2022, 206, 112556.	3.7	28
5	A novel anode Sn/g-C3N4 composite for lithium-ion batteries. Chemical Physics Letters, 2022, 796, 139550.	1.2	9
6	Prussian Blue decorated g-C3N4 – From novel synthesis to insight study on charge transfer strategy for improving visible-light driven photo-Fenton catalytic activity. Journal of Alloys and Compounds, 2022, 916, 165331.	2.8	10
7	A novel preparation of GaN-ZnO/g-C3N4 photocatalyst for methylene blue degradation. Chemical Physics Letters, 2021, 763, 138191.	1.2	8
8	One-step synthesis of oxygen doped g-C3N4 for enhanced visible-light photodegradation of Rhodamine B. Journal of Physics and Chemistry of Solids, 2021, 151, 109900.	1.9	64
9	A facile synthesis of g-C3N4/BaTiO3 photocatalyst with enhanced activity for degradation of methylene blue under visible light. Bulletin of Materials Science, 2021, 44, 1.	0.8	23
10	Facile synthesis of SnS2@g-C3N4 composites as high performance anodes for lithium ion batteries. Applied Surface Science, 2021, 549, 149312.	3.1	24
11	Hydrothermal Synthesis of MoS2/rGO Heterostructures for Photocatalytic Degradation of Rhodamine B under Visible Light. Journal of Nanomaterials, 2021, 2021, 1-11.	1.5	12
12	One-pot synthesis of S-scheme MoS2/g-C3N4 heterojunction as effective visible light photocatalyst. Scientific Reports, 2021 , 11 , 14787 .	1.6	60
13	Visible Light-Driven Mn-MoS ₂ /rGO Composite Photocatalysts for the Photocatalytic Degradation of Rhodamine B. Journal of Chemistry, 2020, 2020, 1-10.	0.9	9
14	Facile one-step synthesis of g–C3N4–supported WS2 with enhanced lithium storage properties. Electrochimica Acta, 2020, 341, 136010.	2.6	20
15	A Facile Method for the Synthesis of a MoS ₂ /g ₃ N ₄ Photocatalyst. Chemical Engineering and Technology, 2019, 42, 2691-2699.	0.9	12
16	Preparation and Characterization of a Hydrophilic Polysulfone Membrane Using Graphene Oxide. Journal of Chemistry, 2019, 2019, 1-10.	0.9	34
17	A Facile Synthesis of MoS2/g-C3N4 Composite as an Anode Material with Improved Lithium Storage Capacity. Materials, 2019, 12, 1730.	1.3	28
18	SnO2 nanosheets/graphite oxide/g-C3N4 composite as enhanced performance anode material for lithium ion batteries. Chemical Physics Letters, 2019, 715, 284-292.	1.2	27

#	Article	IF	CITATIONS
19	A Facile Synthesis of WS ₂ /gâ€C ₃ N ₄ Composites with Improved Photocatalytic Activity. Bulletin of the Korean Chemical Society, 2018, 39, 965-971.	1.0	25
20	SnO2 nanosheets/g-C3N4 composite with improved lithium storage capabilities. Chemical Physics Letters, 2017, 674, 42-47.	1.2	33
21	An insight into CH···N hydrogen bond and stability of the complexes formed by trihalomethanes with ammonia and its monohalogenated derivatives. International Journal of Quantum Chemistry, 2017, 117, e25338.	1.0	9
22	Fe ₃ O ₄ /Reduced Graphene Oxide Nanocomposite: Synthesis and Its Application for Toxic Metal Ion Removal. Journal of Chemistry, 2016, 2016, 1-10.	0.9	62
23	Synthesis of hollow carbon-W18O49 composite and its photocatalytic properties. Journal of Materials Science: Materials in Electronics, 2016, 27, 2662-2669.	1.1	1
24	Preparation of g-C3N4/Ta2O5 Composites with Enhanced Visible-Light Photocatalytic Activity. Journal of Electronic Materials, 2016, 45, 2334-2340.	1.0	9
25	A comparative study on interaction capacity of CO2 with the >SO and >SS groups in some doubly methylated and halogenated derivatives of CH3SOCH3 and CH3SSCH3. Chemical Physics Letters, 2014, 598, 75-80.	1.2	10
26	Facile post-synthesis and photocatalytic activity of N-doped ZnO–SBA-15. Journal of Physics and Chemistry of Solids, 2014, 75, 403-409.	1.9	20
27	Graphitic g-C3N4-WO3Composite: Synthesis and Photocatalytic Properties. Bulletin of the Korean Chemical Society, 2014, 35, 1794-1798.	1.0	8
28	Facile Postsynthesis of N-Doped TiO _{2} -SBA-15 and Its Photocatalytic Activity. Advances in Materials Science and Engineering, 2013, 2013, 1-8.	1.0	4
29	Synthesis of Poly(methacrylic acid)-functionalized SBA-15 and its Adsorption of Phenol in Aqueous Media. Bulletin of the Korean Chemical Society, 2013, 34, 3570-3576.	1.0	8
30	Noncovalent supramolecular assembly of hexagonally ordered mesoscale Prussian blue analogue. Microporous and Mesoporous Materials, 2012, 163, 211-214.	2.2	1
31	Synthesis, characterization and phenol adsorption of carbonyl-functionalized mesoporous silicas. Journal of Porous Materials, 2012, 19, 295-300.	1.3	16
32	Lamellar Phases Containing Vanadium Oxide: Synthesis, Characterization and Application of the Adsorption of Phenol from Aqueous Solutions. Journal of Nanoscience and Nanotechnology, 2011, 11, 6437-6442.	0.9	1
33	Adsorption of lead from water by thiol-functionalized SBA-15 silicas. Journal of Materials Science, 2010, 45, 2952-2957.	1.7	31
34	Synthesis and characterization of Co–Fe Prussian blue nanoparticles within MCM-41. Materials Research Bulletin, 2009, 44, 78-81.	2.7	23
35	Syntheses, crystal structures and magnetic properties of coordination polymers Ni(NO2)2 and Ni(4,4′-bipy)(NO2)2. Polyhedron, 2009, 28, 1150-1154.	1.0	12
36	Mesolamellar Phases Containing [Re6Q8(CN)6]4– (Q = Te, Se, S) Cluster Anions. European Journal of Inorganic Chemistry, 2008, 2008, 686-692.	1.0	19

#	Article	lF	CITATIONS
37	A new route for obtaining Prussian blue nanoparticles. Materials Chemistry and Physics, 2008, 107, 6-8.	2.0	41