

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5839917/publications.pdf Version: 2024-02-01

SHALL

#	Article	IF	CITATIONS
1	Spatiotemporal Production of Reactive Oxygen Species by NADPH Oxidase Is Critical for Tapetal Programmed Cell Death and Pollen Development in <i>Arabidopsis</i> . Plant Cell, 2014, 26, 2007-2023.	6.6	247
2	PROTEIN S-ACYL TRANSFERASE10 Is Critical for Development and Salt Tolerance in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 1093-1107.	6.6	131
3	Arabidopsis <scp>COBRA</scp> â€ <scp>LIKE</scp> 10, a <scp>GPI</scp> â€anchored protein, mediates directional growth of pollen tubes. Plant Journal, 2013, 74, 486-497.	5.7	105
4	Arabidopsis Rop <scp>GEF</scp> 4 and Rop <scp>GEF</scp> 10 are important for <scp>FERONIA</scp> â€mediated developmental but not environmental regulation of root hair growth. New Phytologist, 2013, 200, 1089-1101.	7.3	81
5	HAPLESS13, the Arabidopsis µ1 Adaptin, Is Essential for Protein Sorting at the trans-Golgi Network/Early Endosome. Plant Physiology, 2013, 162, 1897-1910.	4.8	77
6	Reactive oxygen species mediate tapetal programmed cell death in tobacco and tomato. BMC Plant Biology, 2017, 17, 76.	3.6	48
7	A Tonoplast-Associated Calcium-Signaling Module Dampens ABA Signaling during Stomatal Movement. Plant Physiology, 2018, 177, 1666-1678.	4.8	47
8	Arabidopsis RhoGDIs Are Critical for Cellular Homeostasis of Pollen Tubes. Plant Physiology, 2016, 170, 841-856.	4.8	43
9	AGC1.5 Kinase Phosphorylates RopGEFs to Control Pollen Tube Growth. Molecular Plant, 2018, 11, 1198-1209.	8.3	43
10	Adaptor Protein-3-Dependent Vacuolar Trafficking Involves a Subpopulation of COPII and HOPS Tethering Proteins. Plant Physiology, 2017, 174, 1609-1620.	4.8	42
11	Importin β4 Mediates Nuclear Import of GRF-Interacting Factors to Control Ovule Development in Arabidopsis. Plant Physiology, 2019, 179, 1080-1092.	4.8	42
12	HAPLESS13-Mediated Trafficking of STRUBBELIG Is Critical for Ovule Development in Arabidopsis. PLoS Genetics, 2016, 12, e1006269.	3.5	36
13	Protein palmitoylation is critical for the polar growth of root hairs in Arabidopsis. BMC Plant Biology, 2015, 15, 50.	3.6	32
14	Precocious leaf senescence by functional loss of PROTEIN S-ACYL TRANSFERASE14 involves the NPR1-dependent salicylic acid signaling. Scientific Reports, 2016, 6, 20309.	3.3	32
15	Arabidopsis <scp>PROTEIN </scp> <i>S</i> â€ <scp>ACYL TRANSFERASE</scp> 4 mediates root hair growth. Plant Journal, 2017, 90, 249-260.	5.7	31
16	The juxtamembrane and carboxy-terminal domains of Arabidopsis PRK2 are critical for ROP-induced growth in pollen tubes. Journal of Experimental Botany, 2013, 64, 5599-5610.	4.8	30
17	Arabidopsis CBP60b is a central transcriptional activator of immunity. Plant Physiology, 2021, 186, 1645-1659.	4.8	30
18	<i><scp>PLURIPETALA</scp></i> mediates <scp>ROP</scp> 2 localization and stability in parallel to <i><scp>SCN</scp>1</i> but synergistically with <i><scp>TIP</scp>1</i> in root hairs. Plant Journal, 2016, 86, 413-425.	5.7	25

Sha Li

#	Article	IF	CITATIONS
19	The ADAPTOR PROTEIN-3 Complex Mediates Pollen Tube Growth by Coordinating Vacuolar Targeting and Organization. Plant Physiology, 2018, 177, 216-225.	4.8	25
20	Tonoplast targeting of VHAâ€a3 relies on a Rab5â€mediated but Rab7â€independent vacuolar trafficking route. Journal of Integrative Plant Biology, 2017, 59, 230-233.	8.5	22
21	AP1G mediates vacuolar acidification during synergid-controlled pollen tube reception. Proceedings of the United States of America, 2017, 114, E4877-E4883.	7.1	22
22	Arabidopsis <i>VAC14</i> Is Critical for Pollen Development through Mediating Vacuolar Organization. Plant Physiology, 2018, 177, 1529-1538.	4.8	22
23	Arabidopsis <i>KETCH1</i> Is Critical for the Nuclear Accumulation of Ribosomal Proteins and Gametogenesis. Plant Cell, 2020, 32, 1270-1284.	6.6	22
24	Arabidopsis JANUS Regulates Embryonic Pattern Formation through Pol II-Mediated Transcription of WOX2 and PIN7. IScience, 2019, 19, 1179-1188.	4.1	20
25	NRT1.1-Mediated Nitrate Suppression of Root Coiling Relies on PIN2- and AUX1-Mediated Auxin Transport. Frontiers in Plant Science, 2020, 11, 671.	3.6	19
26	COPII Components Sar1b and Sar1c Play Distinct Yet Interchangeable Roles in Pollen Development. Plant Physiology, 2020, 183, 974-985.	4.8	19
27	A positive feedback circuit for ROP-mediated polar growth. Molecular Plant, 2021, 14, 395-410.	8.3	19
28	The C-Terminal Hypervariable Domain Targets Arabidopsis ROP9 to the Invaginated Pollen Tube Plasma Membrane. Molecular Plant, 2013, 6, 1362-1364.	8.3	18
29	<i>S</i> â€acylation of CBL10/SCaBP8 by PAT10 is crucial for its tonoplast association and function in salt tolerance. Journal of Integrative Plant Biology, 2020, 62, 718-722.	8.5	15
30	Transcriptional Regulation of <i>PLETHORA1</i> in the Root Meristem Through an Importin and Its Two Antagonistic Cargos. Plant Cell, 2020, 32, 3812-3824.	6.6	15
31	Freeâ€base porphyrins as CEST MRI contrast agents with highly upfield shifted labile protons. Magnetic Resonance in Medicine, 2019, 82, 577-585.	3.0	14
32	UV RESISTANCE LOCUS8 mediates ultraviolet-B-induced stomatal closure in an ethylene-dependent manner. Plant Science, 2020, 301, 110679.	3.6	14
33	SF3b4: A Versatile Player in Eukaryotic Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 14.	3.7	14
34	FERONIA mediates root nutating growth. Plant Journal, 2020, 104, 1105-1116.	5.7	13
35	The <i>Arabidopsis</i> R NARE protein YKT61 is essential for gametophyte development. Journal of Integrative Plant Biology, 2021, 63, 676-694.	8.5	13
36	Targeting and signaling of Rho of plants guanosine triphosphatases require synergistic interaction between guanine nucleotide inhibitor and vesicular trafficking. Journal of Integrative Plant Biology, 2020, 62, 1484-1499.	8.5	11

Sha Li

#	Article	IF	CITATIONS
37	<i>Arabidopsis</i> adaptor protein 1G is critical for pollen development. Journal of Integrative Plant Biology, 2017, 59, 594-599.	8.5	10
38	HUA ENHANCER1 Mediates Ovule Development. Frontiers in Plant Science, 2020, 11, 397.	3.6	9
39	The canonical α-SNAP is essential for gametophytic development in Arabidopsis. PLoS Genetics, 2021, 17, e1009505.	3.5	9
40	To Grow or Not to Grow: FERONIA Has Her Say. Molecular Plant, 2014, 7, 1261-1263.	8.3	8
41	Protein S-acyl transferase 4 controls nucleus position during root hair tip growth. Plant Signaling and Behavior, 2017, 12, e1311438.	2.4	7
42	Functions of plant importin \hat{l}^2 proteins beyond nucleocytoplasmic transport. Journal of Experimental Botany, 2021, 72, 6140-6149.	4.8	7
43	Vesicle trafficking in <i>Arabidopsis</i> pollen tubes. FEBS Letters, 2022, , .	2.8	5
44	Arabidopsis Chloroplast protein for Growth and Fertility1 (CGF1) and CGF2 are essential for chloroplast development and female gametogenesis. BMC Plant Biology, 2020, 20, 172.	3.6	4
45	Arabidopsis ADPâ€RIBOSYLATION FACTORâ€A1s mediate tapetumâ€controlled pollen development. Plant Journal, 2021, 108, 268-280.	5.7	3
46	Update on adaptor protein-3 in Arabidopsis. Plant Signaling and Behavior, 2017, 12, e1356969.	2.4	2
47	Vacuolar trafficking in pollen tube growth and guidance. Plant Signaling and Behavior, 2018, 13, e1464854.	2.4	2
48	Spliceosome component JANUS fulfills a role of mediator in transcriptional regulation during Arabidopsis development. Plant Signaling and Behavior, 2021, 16, 1841974.	2.4	2
49	GPS in pollen tubes: Found!. Science China Life Sciences, 2016, 59, 438-439.	4.9	1
50	Nitrate deficiency induces differential endocytosis in roots through NRT1.1. Plant Signaling and Behavior, 2020, 15, 1794394.	2.4	1
51	Downregulating VAC14 in Guard Cells Causes Drought Hypersensitivity by Inhibiting Stomatal Closure. Frontiers in Plant Science, 2020, 11, 602701.	3.6	1
52	<i>Arabidopsis</i> <scp>RAN GTPases</scp> are critical for mitosis during male and female gametogenesis. FEBS Letters, 2022, 596, 1892-1903.	2.8	1