Massimo Esposito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5839807/publications.pdf

Version: 2024-02-01

394390 434170 1,273 96 19 31 citations g-index h-index papers 102 102 102 1105 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Assessing BERT's ability to learn Italian syntax: a study on null-subject and agreement phenomena. Journal of Ambient Intelligence and Humanized Computing, 2023, 14, 289-303.	4.9	17
2	BERT syntactic transfer: A computational experiment on Italian, French and English languages. Computer Speech and Language, 2022, 71, 101261.	4.3	25
3	A conversational agent for querying Italian Patient Information Leaflets and improving health literacy. Computers in Biology and Medicine, 2022, 141, 105004.	7.0	17
4	Lexicon-Based vs. Bert-Based Sentiment Analysis: A Comparative Study in Italian. Electronics (Switzerland), 2022, 11, 374.	3.1	45
5	Betting on Yourself: A Decision Model for Human Resource Allocation Enriched With Self-Assessment of Soft Skills and Preferences. IEEE Access, 2022, 10, 26859-26875.	4.2	2
6	Special Issue "Natural Language Engineering: Methods, Tasks and Applications― Future Internet, 2022, 14, 106.	3.8	0
7	Quantum Natural Language Processing: Challenges and Opportunities. Applied Sciences (Switzerland), 2022, 12, 5651.	2.5	16
8	Editorial: Language and Vision in Robotics: Emerging Neural and On-Device Approaches. Frontiers in Computer Science, 2022, 4, .	2.8	0
9	An ELECTRA-Based Model for Neural Coreference Resolution. IEEE Access, 2022, 10, 75144-75157.	4.2	3
10	A Novel COVID-19 Data Set and an Effective Deep Learning Approach for the De-Identification of Italian Medical Records. IEEE Access, 2021, 9, 19097-19110.	4.2	19
11	ELECTRA for Neural Coreference Resolution in Italian. IEEE Access, 2021, 9, 115643-115654.	4.2	10
12	Combining contextualized word representation and sub-document level analysis through Bi-LSTM+CRF architecture for clinical de-identification. Knowledge-Based Systems, 2021, 213, 106649.	7.1	38
13	Special Issue on "Natural Language Processing: Emerging Neural Approaches and Applications― Applied Sciences (Switzerland), 2021, 11, 6717.	2.5	2
14	Multilingual evaluation of pre-processing for BERT-based sentiment analysis of tweets. Expert Systems With Applications, 2021, 181, 115119.	7.6	50
15	Modeling Multiple Language Learning in a Developmental Cognitive Architecture. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13, 922-933.	3.8	4
16	An Effective BERT-Based Pipeline for Twitter Sentiment Analysis: A Case Study in Italian. Sensors, 2021, 21, 133.	3.8	75
17	Clinical de-identification using sub-document analysis and ELECTRA. , 2021, , .		O
18	Lexicon-Grammar based open information extraction from natural language sentences in Italian. Expert Systems With Applications, 2020, 143, 112954.	7.6	12

#	Article	IF	Citations
19	Hybrid query expansion using lexical resources and word embeddings for sentence retrieval in question answering. Information Sciences, 2020, 514, 88-105.	6.9	80
20	Crosslingual named entity recognition for clinical de-identification applied to a COVID-19 Italian data set. Applied Soft Computing Journal, 2020, 97, 106779.	7.2	46
21	Best Practices of Convolutional Neural Networks for Question Classification. Applied Sciences (Switzerland), 2020, 10, 4710.	2.5	25
22	SARS-CoV-2 Infections and COVID-19 Fatality: Estimation of Infection Fatality Ratio and Current Prevalence. International Journal of Environmental Research and Public Health, 2020, 17, 9290.	2.6	4
23	Editorial: Language Representation and Learning in Cognitive and Artificial Intelligence Systems. Frontiers in Robotics and Al, 2020, 7, 69.	3.2	1
24	Discovering Leonardo with artificial intelligence and holograms: A user study. Pattern Recognition Letters, 2020, 131, 361-367.	4.2	19
25	Serious Games and In-Cloud Data Analytics for the Virtualization and Personalization of Rehabilitation Treatments. IEEE Transactions on Industrial Informatics, 2019, 15, 517-526.	11.3	13
26	Multivariate fuzzy analysis of brain tissue volumes and relaxation rates for supporting the diagnosis of relapsing-remitting multiple sclerosis. Biomedical Signal Processing and Control, 2019, 53, 101591.	5.7	1
27	Multilingual POS tagging by a composite deep architecture based on character-level features and on-the-fly enriched Word Embeddings. Knowledge-Based Systems, 2019, 164, 309-323.	7.1	40
28	A Comparison of Character and Word Embeddings in Bidirectional LSTMs for POS Tagging in Italian. Smart Innovation, Systems and Technologies, 2019, , 14-23.	0.6	7
29	A smart mobile, self-configuring, context-aware architecture for personal health monitoring. Engineering Applications of Artificial Intelligence, 2018, 67, 136-156.	8.1	45
30	Likelihood-fuzzy analysis: From data, through statistics, to interpretable fuzzy classifiers. International Journal of Approximate Reasoning, 2018, 93, 88-102.	3.3	16
31	Question Classification by Convolutional Neural Networks Embodying Subword Information. , 2018, , .		4
32	A Subword-Based Deep Learning Approach for Sentiment Analysis of Political Tweets. , 2018, , .		17
33	Open Information Extraction for Italian Sentences. , 2018, , .		3
34	Tuning SyntaxNet for POS Tagging Italian Sentences. Lecture Notes on Data Engineering and Communications Technologies, 2018, , 314-324.	0.7	4
35	An Effective Corpus-Based Question Answering Pipeline for Italian. Smart Innovation, Systems and Technologies, 2018, , 80-90.	0.6	3
36	Query Expansion Based on WordNet and Word2vec for Italian Question Answering Systems. Lecture Notes on Data Engineering and Communications Technologies, 2018, , 301-313.	0.7	2

#	Article	IF	Citations
37	Designing rule-based fuzzy systems for classification in medicine. Knowledge-Based Systems, 2017, 124, 105-132.	7.1	39
38	Early prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT radiomics and fuzzy classification. Artificial Intelligence in Medicine, 2017, 81, 41-53.	6.5	58
39	Optimization of rule-based systems in mHealth applications. Engineering Applications of Artificial Intelligence, 2017, 59, 103-121.	8.1	4
40	Learning to rank answers to closed-domain questions by using fuzzy logic. , 2017, , .		7
41	A Hypothetical Reasoning System for Mobile Health and Wellness Applications. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2017, , 278-286.	0.3	1
42	Towards a Framework for Closed-Domain Question Answering in Italian. , 2016, , .		14
43	Interpretability indexes for Fuzzy classification in cognitive systems. , 2016, , .		9
44	Interval type-2 fuzzy DSS for unbiased medical diagnosis. , 2016, , .		0
45	A hybrid reasoning system for mobile and intelligent health services. , $2016, , .$		0
46	An Architectural Model for Extracting FHIR Resources from CDA Documents., 2016,,.		7
47	Encoding Clinical Recommendations into Fuzzy DSSs: An Application to COPD Guidelines. Advances in Intelligent Systems and Computing, 2016, , 345-357.	0.6	0
48	A Forward-Selection Algorithm for SVM-Based Question Classification in Cognitive Systems. Smart Innovation, Systems and Technologies, 2016, , 587-598.	0.6	11
49	A fuzzy framework for encoding uncertainty in clinical decision-making. Knowledge-Based Systems, 2016, 98, 95-116.	7.1	13
50	Formal Specification of Temporal Constraints in Clinical Practice Guidelines. Advances in Intelligent Systems and Computing, 2016, , 373-386.	0.6	1
51	A Business Process Model for Integrated Home Care. Procedia Computer Science, 2015, 63, 300-307.	2.0	12
52	Early classification of parotid glands shrinkage in radiotherapy patients: A comparative study. Biosystems Engineering, 2015, 138, 77-89.	4.3	9
53	Extracting Compact Sets of Features for Question Classification in Cognitive Systems: A Comparative Study., 2015,,.		8
54	An integrated framework for securing semi-structured health records. Knowledge-Based Systems, 2015, 79, 99-117.	7.1	31

#	Article	IF	Citations
55	Design and validation of a light-weight reasoning system to support remote health monitoring applications. Engineering Applications of Artificial Intelligence, 2015, 41, 232-248.	8.1	22
56	An ontology-based fuzzy approach for encoding cognitive processes in medical decision making. , 2014, , .		2
57	Fuzzy partitioning for clinical DSSs using statistical information transformed into possibility-based knowledge. Knowledge-Based Systems, 2014, 67, 1-15.	7.1	15
58	An extensible six-step methodology to automatically generate fuzzy DSSs for diagnostic applications. BMC Bioinformatics, 2013, 14, S4.	2.6	10
59	Interval type-2 fuzzy logic for encoding clinical practice guidelines. Knowledge-Based Systems, 2013, 54, 329-341.	7.1	11
60	A System for Semantic-Based Access Control. , 2013, , .		4
61	A multi-level fuzzy inference system for developing DSS based on clinical guidelines. , 2013, , .		1
62	Transforming probability distributions into membership functions of fuzzy classes: A hypothesis test approach. Fuzzy Sets and Systems, 2013, 233, 52-73.	2.7	40
63	GLM-CDS: A Standards-Based Verifiable Guideline Model for Decision Support in Clinical Applications. Lecture Notes in Computer Science, 2013, , 143-157.	1.3	3
64	A Fuzzy Decision Support Language for Building Mobile DSSs for Healthcare Applications. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2013, , 263-270.	0.3	3
65	Best Fuzzy Partitions to Build Interpretable DSSs for Classification in Medicine. Lecture Notes in Computer Science, 2013, , 558-567.	1.3	9
66	A Hybrid Inference Approach for Building Fuzzy DSSs Based on Clinical Guidelines. Lecture Notes in Computer Science, 2013, , 269-279.	1.3	0
67	A Hybrid Approach for the Verification of Integrity Constraints in Clinical Practice Guidelines. Lecture Notes in Computer Science, 2013, , 81-91.	1.3	0
68	A Knowledge Editing Service for Multisource Data Management in Remote Health Monitoring. IEEE Transactions on Information Technology in Biomedicine, 2012, 16, 1096-1104.	3.2	14
69	Hybridization of possibility theory and supervised clustering to build DSSs for classification in medicine. , 2012, , .		0
70	A Consistency Checker for verifying the knowledge encoded into clinical DSSs. , 2012, , .		0
71	Development and customization of individualized mobile healthcare applications. , 2012, , .		9
72	Verification of clinical guidelines encoded into knowledge-based DSSs. , 2012, , .		O

#	Article	IF	Citations
73	A Knowledge-based Method for Verifying the Reliability of Clinical DSSs. , 2012, , .		2
74	Improving Accuracy and Interpretability of Clinical Decision Support Systems through Possibilistic Constrained Evolutionary Optimization., 2012,,.		2
75	Possibilistic constrained optimization to tune fuzzy rules formalizing medical knowledge by preserving linguistic interpretability. , 2012, , .		1
76	A pattern-based knowledge editing system for building clinical Decision Support Systems. Knowledge-Based Systems, 2012, 35, 120-131.	7.1	19
77	Decision Support for the Remote Management of Chronic Patients. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2012, , 38-45.	0.3	1
78	Structural verification through similarity measures for fuzzy rule bases representing clinical guidelines. Journal of Intelligent and Fuzzy Systems, 2012, 23, 313-326.	1.4	1
79	An infrastructure for smart hospitals. Multimedia Tools and Applications, 2012, 59, 341-362.	3.9	19
80	From Likelihood Uncertainty to Fuzziness: A Possibility-Based Approach for Building Clinical DSSs. Lecture Notes in Computer Science, 2012, , 369-380.	1.3	5
81	A Mobile Reasoning System for Supporting the Monitoring of Chronic Diseases. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2012, , 225-232.	0.3	8
82	MobiFuzzy: A Fuzzy Library to Build Mobile DSSs for Remote Patient Monitoring. Lecture Notes in Computer Science, 2012, , 79-86.	1.3	1
83	A lazy evaluation approach for mobile reasoning in DSSs. , 2011, , .		2
84	An evolutionary-fuzzy DSS for assessing health status in multiple sclerosis disease. International Journal of Medical Informatics, 2011, 80, e245-e254.	3.3	34
85	An ontology-based fuzzy decision support system for multiple sclerosis. Engineering Applications of Artificial Intelligence, 2011, 24, 1340-1354.	8.1	36
86	Transformation of probability distribution into fuzzy set interpretable with likelihood view. , 2011, , .		9
87	Data Driven Generation of Fuzzy Systems: An Application to Breast Cancer Detection. Lecture Notes in Computer Science, 2011, , 203-214.	1.3	8
88	A Pervasive System for Nuclear Medicine Department. Wireless Personal Communications, 2010, 55, 105-120.	2.7	6
89	An evolutionary-fuzzy approach for supporting diagnosis and monitoring of Multiple Sclerosis. , 2010,		4
90	A rule-based mHealth system for cardiac monitoring. , 2010, , .		22

#	Article	lF	CITATIONS
91	A multimodal semantic location service for intelligent environments: an application for Smart Hospitals. Personal and Ubiquitous Computing, 2009, 13, 527-538.	2.8	28
92	An Infrastructure for Pervasive Access to Clinical Data in eHospitals. Studies in Computational Intelligence, 2009, , 431-442.	0.9	1
93	Towards an Implementation of Smart Hospital: A Localization System for Mobile Users and Devices., 2008,,.		13
94	An Ontological and Non-monotonic Rule-Based Approach to Label Medical Images., 2007,,.		7
95	A Semantic Location Service for Pervasive Grids. Lecture Notes in Computer Science, 2006, , 1274-1284.	1.3	3
96	Insights into Interpretability of Neuro-Fuzzy Systems., 0,,.		1