
R Charlotte Moffett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5839800/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Endogenous GLP-1 and GIP in Beta Cell Compensatory Responses to Insulin Resistance and Cellular Stress. PLoS ONE, 2014, 9, e101005.	2.5	74
2	Incretin Receptor Null Mice Reveal Key Role of GLP-1 but Not GIP in Pancreatic Beta Cell Adaptation to Pregnancy. PLoS ONE, 2014, 9, e96863.	2.5	64
3	Islet distribution of Peptide YY and its regulatory role in primary mouse islets and immortalised rodent and human beta-cell function and survival. Molecular and Cellular Endocrinology, 2016, 436, 102-113.	3.2	63
4	Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice. Journal of Endocrinology, 2017, 234, 255-267.	2.6	62
5	Beneficial effects of the novel cholecystokinin agonist (pGlu-Gln)-CCK-8 in mouse models of obesity/diabetes. Diabetologia, 2012, 55, 2747-2758.	6.3	60
6	Differential molecular and cellular responses of GLP-1 secreting L-cells and pancreatic alpha cells to glucotoxicity and lipotoxicity. Experimental Cell Research, 2015, 336, 100-108.	2.6	33
7	Influence of neuropeptide Y and pancreatic polypeptide on islet function and beta-cell survival. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 749-758.	2.4	33
8	Oxytocin is present in islets and plays a role in beta-cell function and survival. Peptides, 2018, 100, 260-268.	2.4	33
9	Liraglutide and sitagliptin counter beta- to alpha-cell transdifferentiation in diabetes. Journal of Endocrinology, 2020, 245, 53-64.	2.6	31
10	Locally produced xenin and the neurotensinergic system in pancreatic islet function and β-cell survival. Biological Chemistry, 2017, 399, 79-92.	2.5	26
11	Vasopressin receptors in islets enhance glucose tolerance, pancreatic beta-cell secretory function, proliferation and survival. Biochimie, 2019, 158, 191-198.	2.6	26
12	Emerging role of GIP and related gut hormones in fertility and PCOS. Peptides, 2020, 125, 170233.	2.4	26
13	Chemical cholecystokinin receptor activation protects against obesity-diabetes in high fat fed mice and has sustainable beneficial effects in genetic ob/ob mice. Biochemical Pharmacology, 2013, 85, 81-91.	4.4	25
14	Alterations of Glucose-Dependent Insulinotropic Polypeptide and Expression of Genes Involved in Mammary Gland and Adipose Tissue Lipid Metabolism during Pregnancy and Lactation. PLoS ONE, 2013, 8, e78560.	2.5	25
15	Effects of long-acting GIP, xenin and oxyntomodulin peptide analogues on alpha-cell transdifferentiation in insulin-deficient diabetic GluCreERT2;ROSA26-eYFP mice. Peptides, 2020, 125, 170205.	2.4	24
16	Effects of glucose-dependent insulinotropic polypeptide receptor knockout and a high-fat diet on cognitive function and hippocampal gene expression in mice. Molecular Medicine Reports, 2015, 12, 1544-1548.	2.4	21
17	Beneficial metabolic actions of a stable GIP agonist following pre-treatment with a SGLT2 inhibitor in high fat fed diabetic mice. Molecular and Cellular Endocrinology, 2016, 420, 37-45.	3.2	21
18	Differential expression of glucagon-like peptide-2 (GLP-2) is involved in pancreatic islet cell adaptations to stress and beta-cell survival. Peptides, 2017, 95, 68-75.	2.4	21

R CHARLOTTE MOFFETT

#	Article	IF	CITATIONS
19	The altered enteroendocrine reportoire following roux-en-Y-gastric bypass as an effector of weight loss and improved glycaemic control. Appetite, 2021, 156, 104807.	3.7	20
20	Functional GIP receptors play a major role in islet compensatory response to high fat feeding in mice. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 1206-1214.	2.4	18
21	Dapagliflozin exerts positive effects on beta cells, decreases glucagon and does not alter beta- to alpha-cell transdifferentiation in mouse models of diabetes and insulin resistance. Biochemical Pharmacology, 2020, 177, 114009.	4.4	18
22	Molecular mechanisms mediating the beneficial metabolic effects of [Arg4]tigerinin-1R in mice with diet-induced obesity and insulin resistance. Biological Chemistry, 2016, 397, 753-764.	2.5	17
23	Esculentin-2CHa(1–30) and its analogues: stability and mechanisms of insulinotropic action. Journal of Endocrinology, 2017, 232, 423-435.	2.6	17
24	Beneficial actions of a longâ€acting apelin analogue in diabetes are related to positive effects on islet cell turnover and transdifferentiation. Diabetes, Obesity and Metabolism, 2020, 22, 2468-2478.	4.4	17
25	Actions of PGLa-AM1 and its [A14K] and [A20K] analogues and their therapeutic potential as anti-diabetic agents. Biochimie, 2017, 138, 1-12.	2.6	16
26	ldentification of Components in Frog Skin Secretions with Therapeutic Potential as Antidiabetic Agents. Methods in Molecular Biology, 2018, 1719, 319-333.	0.9	15
27	Expression of Gastrin Family Peptides in Pancreatic Islets and Their Role in β-Cell Function and Survival. Pancreas, 2018, 47, 190-199.	1.1	15
28	Anti-diabetic actions of esculentin-2CHa(1–30) and its stable analogues in a diet-induced model of obesity-diabetes. Amino Acids, 2017, 49, 1705-1717.	2.7	14
29	Antidiabetic drug therapy alleviates type 1 diabetes in mice by promoting pancreatic α-cell transdifferentiation. Biochemical Pharmacology, 2020, 182, 114216.	4.4	14
30	Beneficial effects of parenteral GLP-1 delivery by cell therapy in insulin-deficient streptozotocin diabetic mice. Gene Therapy, 2013, 20, 1077-1084.	4.5	13
31	Responses of GLP1-secreting L-cells to cytotoxicity resemble pancreatic β-cells but not α-cells. Journal of Molecular Endocrinology, 2015, 54, 91-104.	2.5	12
32	Positive Effects of NPY1 Receptor Activation on Islet Structure Are Driven by Pancreatic Alpha- and Beta-Cell Transdifferentiation in Diabetic Mice. Frontiers in Endocrinology, 2021, 12, 633625.	3.5	12
33	GABA and insulin but not nicotinamide augment α- to β-cell transdifferentiation in insulin-deficient diabetic mice. Biochemical Pharmacology, 2022, 199, 115019.	4.4	11
34	Evaluation of the role of N-methyl-D-aspartate (NMDA) receptors in insulin secreting beta-cells. European Journal of Pharmacology, 2016, 771, 107-113.	3.5	10
35	Development and characterisation of novel, enzymatically stable oxytocin analogues with beneficial antidiabetic effects in high fat fed mice. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129811.	2.4	10
36	Co-culture of clonal beta cells with GLP-1 and glucagon-secreting cell line impacts on beta cell insulin secretion, proliferation and susceptibility to cytotoxins. Biochimie, 2016, 125, 119-125.	2.6	9

#	Article	IF	CITATIONS
37	Effects of first-line diabetes therapy with biguanides, sulphonylurea and thiazolidinediones on the differentiation, proliferation and apoptosis of islet cell populations. Journal of Endocrinological Investigation, 2022, 45, 95-103.	3.3	8
38	Synthesis and Evaluation of a Series of Longâ€Acting Glucagonâ€Like Peptideâ€1 (GLPâ€1) Pentasaccharide Conjugates for the Treatment of Typeâ€2 Diabetes. ChemMedChem, 2015, 10, 1424-1434.	3.2	7
39	Pharmacological characterization and antidiabetic activity of a longâ€acting glucagonâ€like peptideâ€1 analogue conjugated to an antithrombin <scp>III</scp> â€binding pentasaccharide. Diabetes, Obesity and Metabolism, 2015, 17, 760-770.	4.4	7
40	Enzymatically stable analogue of the gutâ€derived peptide xenin on betaâ€cell transdifferentiation in high fat fed and insulinâ€deficient <i>Ins1^{Cre/+};Rosa26â€eYFP mice</i> . Diabetes/Metabolism Research and Reviews, 2021, 37, e3384.	4.0	7
41	Beneficial actions of the [A14K] analog of the frog skin peptide PGLa-AM1 in mice with obesity and degenerative diabetes: A mechanistic study. Peptides, 2021, 136, 170472.	2.4	5
42	Weightâ€reducing, lipidâ€lowering and antidiabetic activities of a novel arginine vasopressin analogue acting at the V1a and V1b receptors in highâ€fatâ€fed mice. Diabetes, Obesity and Metabolism, 2021, 23, 2215-2225.	4.4	4
43	Beneficial impact of Ac3IV, an AVP analogue acting specifically at V1a and V1b receptors, on diabetes islet morphology and transdifferentiation of alpha- and beta-cells. PLoS ONE, 2021, 16, e0261608.	2.5	4
44	Classical and non-classical islet peptides in the control of \hat{l}^2 -cell function. Peptides, 2022, 150, 170715.	2.4	3
45	Effects of longâ€acting analogues of lamprey GLPâ€1 and paddlefish glucagon on alpha―to betaâ€cell transdifferentiation in an insulinâ€deficient transgenic mouse model. Journal of Peptide Science, 2021, 27, e3328.	1.4	2
46	Ac3IV, a V1a and V1b receptor selective vasopressin analogue, protects against hydrocortisone-induced changes in pancreatic islet cell lineage. Peptides, 2022, 152, 170772.	2.4	1