Keiichi Umetsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5839658/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The eROSITA Final Equatorial-Depth Survey (eFEDS). Astronomy and Astrophysics, 2022, 661, A11.	5.1	31
2	The XXL survey. Astronomy and Astrophysics, 2022, 663, A3.	5.1	10
3	HSC-XXL: Baryon budget of the 136 XXL groups and clusters. Publication of the Astronomical Society of Japan, 2022, 74, 175-208.	2.5	17
4	Dwarf galaxy luminosity functions and cluster environments. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2796-2813.	4.4	2
5	Multicomponent DHOST analysis in galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1878-1892.	4.4	8
6	Likelihood-free Forward Modeling for Cluster Weak Lensing and Cosmology. Astrophysical Journal, 2022, 925, 145.	4.5	5
7	Star Formation Properties of Sloan Digital Sky Survey BOSS Void Galaxies in the Hyper Suprime-Cam Survey. Astrophysical Journal, 2022, 926, 115.	4.5	5
8	Probing vainsthein-screening gravity with galaxy clusters using internal kinematics and strong and weak lensing. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4280-4290.	4.4	7
9	The Three Hundred project: dissecting the Fundamental Plane of galaxy clusters up to <i>z</i> Â= 1. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1214-1233.	4.4	2
10	MUSUBI (MegaCam Ultra-deep Survey: u*-band Imaging) Data for the COSMOS and SXDS Fields. Astrophysical Journal, Supplement Series, 2022, 260, 54.	7.7	0
11	LoVoCCS. I. Survey Introduction, Data Processing Pipeline, and Early Science Results. Astrophysical Journal, 2022, 933, 84.	4.5	2
12	Understanding X-ray and optical selection of galaxy clusters: a comparison of the XXL and CAMIRA cluster catalogues obtained in the common XXL-HSC SSP area. Monthly Notices of the Royal Astronomical Society, 2021, 503, 5624-5637.	4.4	7
13	RELICS: Properties of z ≥ 5.5 Galaxies Inferred from Spitzer and Hubble Imaging, Including A Candidate z â^¼ 6.8 Strong [O iii] emitter. Astrophysical Journal, 2021, 910, 135.	4.5	20
14	CLUMP-3D: the lack of non-thermal motions in galaxy cluster cores. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4338-4344.	4.4	11
15	The Cluster HEritage project with <i>XMM-Newton</i> : Mass Assembly and Thermodynamics at the Endpoint of structure formation. Astronomy and Astrophysics, 2021, 650, A104.	5.1	36
16	SkyPy: A package for modelling the Universe. Journal of Open Source Software, 2021, 6, 3056.	4.6	4
17	The miniJPAS survey: A preview of the Universe in 56 colors. Astronomy and Astrophysics, 2021, 653, A31.	5.1	54
18	CLASH-VLT: Abell S1063. Astronomy and Astrophysics, 2021, 656, A147.	5.1	24

#	Article	IF	CITATIONS
19	Systematic Perturbations of the Thermodynamic Properties in Cool Cores of HIFLUGCS Galaxy Clusters. Astrophysical Journal, 2021, 922, 81.	4.5	5
20	A clustering-based self-calibration of the richness-to-mass relation of CAMIRA galaxy clusters out to z â‰^ 1.1 in the Hyper Suprime-Cam survey. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2030-2053.	4.4	16
21	The richness-to-mass relation of CAMIRA galaxy clusters from weak-lensing magnification in the Subaru Hyper Suprime-Cam survey. Monthly Notices of the Royal Astronomical Society, 2020, 495, 428-450.	4.4	22
22	Active gas features in three HSC-SSP CAMIRA clusters revealed by high angular resolution analysis of MUSTANG-2 SZE and XXL X-ray observations. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1701-1732.	4.4	11
23	Cluster–galaxy weak lensing. Astronomy and Astrophysics Review, 2020, 28, 1.	25.5	62
24	Redshift Evolution of Green Valley Galaxies in Different Environments from the Hyper Suprime-Cam Survey. Astrophysical Journal, 2020, 894, 125.	4.5	15
25	Gas Density Perturbations in the Cool Cores of CLASH Galaxy Clusters. Astrophysical Journal, 2020, 892, 100.	4.5	6
26	The BUFFALO HST Survey. Astrophysical Journal, Supplement Series, 2020, 247, 64.	7.7	57
27	XXL Survey groups and clusters in the Hyper Suprime-Cam Survey. Scaling relations between X-ray properties and weak lensing mass. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4528-4545.	4.4	25
28	CLASH-VLT: a full dynamical reconstruction of the mass profile of Abell S1063 from 1 kpc out to the virial radius. Astronomy and Astrophysics, 2020, 637, A34.	5.1	27
29	The XXL Survey. Astronomy and Astrophysics, 2020, 642, A124.	5.1	6
30	RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies. Astrophysical Journal, 2020, 889, 189.	4.5	58
31	Weak-lensing Analysis of X-Ray-selected XXL Galaxy Groups and Clusters with Subaru HSC Data. Astrophysical Journal, 2020, 890, 148.	4.5	45
32	The Radial Acceleration Relation in CLASH Galaxy Clusters. Astrophysical Journal, 2020, 896, 70.	4.5	38
33	RELICS: A Very Large (Î, _E Ââ^¼Â40″) Cluster Lens—RXC J0032.1+1808. Astrophysical Journal, 20 6.	020 <u>, 8</u> 98, 4.8	10
34	The Dynamical State of the Frontier Fields Galaxy Cluster Abell 370. Astrophysical Journal, 2020, 900, 151.	4.5	9
35	The XXL Survey. Astronomy and Astrophysics, 2020, 642, A126.	5.1	6
36	Weak-lensing Mass Calibration of ACTPol Sunyaev–Zel'dovich Clusters with the Hyper Suprime-Cam Survey. Astrophysical Journal, 2019, 875, 63.	4.5	72

#	Article	IF	CITATIONS
37	RELICS: Strong Lensing Analysis of MACS J0417.5–1154 and Predictions for Observing the Magnified High-redshift Universe with JWST. Astrophysical Journal, 2019, 873, 96.	4.5	27
38	Line-of-Sight Gas Sloshing in the Cool Core of Abell 907. Astrophysical Journal, 2019, 871, 207.	4.5	9
39	RELICS: High-resolution Constraints on the Inner Mass Distribution of the zÂ=Â0.83 Merging Cluster RXJ0152.7-1357 from Strong Lensing. Astrophysical Journal, 2019, 874, 132.	4.5	18
40	The new fundamental plane dictating galaxy cluster evolution. Proceedings of the International Astronomical Union, 2019, 15, 271-272.	0.0	0
41	RELICS: Reionization Lensing Cluster Survey. Astrophysical Journal, 2019, 884, 85.	4.5	141
42	Halo Concentrations and the Fundamental Plane of Galaxy Clusters. Galaxies, 2019, 7, 8.	3.0	4
43	Strong lensing models of eight CLASH clusters from extensive spectroscopy: Accurate total mass reconstructions in the cores. Astronomy and Astrophysics, 2019, 632, A36.	5.1	61
44	A large sample of shear-selected clusters from the Hyper Suprime-Cam Subaru Strategic Program S16A Wide field mass maps. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	30
45	Discovery of a New Fundamental Plane Dictating Galaxy Cluster Evolution from Gravitational Lensing. Astrophysical Journal, 2018, 857, 118.	4.5	23
46	The Hyper Suprime-Cam SSP Survey: Overview and survey design. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	566
47	Planck Sunyaev–Zel'dovich cluster mass calibration using Hyper Suprime-Cam weak lensing. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	33
48	RELICS: Strong-lensing Analysis of the Massive Clusters MACS J0308.9+2645 and PLCK G171.9â^'40.7. Astrophysical Journal, 2018, 858, 42.	4.5	26
49	A New Interpretation of the Mass–Temperature Relation and Mass Calibration of Galaxy Clusters Based on the Fundamental Plane. Astrophysical Journal, 2018, 863, 37.	4.5	14
50	CLUMP-3D: Three-dimensional Shape and Structure of 20 CLASH Galaxy Clusters from Combined Weak and Strong Lensing. Astrophysical Journal, 2018, 860, 126.	4.5	22
51	Inside a Beehive: The Multiple Merging Processes in the Galaxy Cluster Abell 2142 [*] . Astrophysical Journal, 2018, 863, 102.	4.5	21
52	CLUMP-3D: Testing \hat{P} CDM with Galaxy Cluster Shapes. Astrophysical Journal Letters, 2018, 860, L4.	8.3	29
53	RELICS: Strong Lensing Analysis of the Galaxy Clusters Abell S295, Abell 697, MACS J0025.4-1222, and MACS J0159.8-0849. Astrophysical Journal, 2018, 863, 145.	4.5	24
54	Growing a â€~cosmic beast': observations and simulations of MACS J0717.5+3745. Monthly Notices of t Royal Astronomical Society, 2018, 481, 2901-2917.	:he 4.4	25

#	Article	IF	CITATIONS
55	Source selection for cluster weak lensing measurements in the Hyper Suprime-Cam survey. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	35
56	Splashback radius of nonspherical dark matter halos from cosmic density and velocity fields. Physical Review D, 2018, 98, .	4.7	17
57	Constraints on the Mass, Concentration, and Nonthermal Pressure Support of Six CLASH Clusters from a Joint Analysis of X-Ray, SZ, and Lensing Data. Astrophysical Journal, 2018, 861, 71.	4.5	19
58	RELICS: A Candidate zÂâ^¼Â10 Galaxy Strongly Lensed into a Spatially Resolved Arc. Astrophysical Journal Letters, 2018, 864, L22.	8.3	57
59	Multiwavelength study of X-ray luminous clusters in the Hyper Suprime-Cam Subaru Strategic Program S16A field. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	7
60	CLASH-VLT: spectroscopic confirmation of a z = 6.11 quintuply lensed galaxy in the Frontier Fields Cluster RXC J2248.7-4431 (Corrigendum). Astronomy and Astrophysics, 2018, 611, C2.	5.1	2
61	RELICS: Strong Lens Models for Five Galaxy Clusters from the Reionization Lensing Cluster Survey. Astrophysical Journal, 2018, 859, 159.	4.5	55
62	The Projected Dark and Baryonic Ellipsoidal Structure of 20 CLASH Galaxy Clusters*. Astrophysical Journal, 2018, 860, 104.	4.5	44
63	Unveiling the Dynamical State of Massive Clusters through the ICL Fraction. Astrophysical Journal, 2018, 857, 79.	4.5	41
64	RELICS: A Strong Lens Model for SPT-CLJ0615–5746, a zÂ=Â0.972 Cluster. Astrophysical Journal, 2018, 863, 154.	4.5	23
65	First data release of the Hyper Suprime-Cam Subaru Strategic Program. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	327
66	The <scp>XXL</scp> survey: First results and future. Astronomische Nachrichten, 2017, 338, 334-341.	1.2	9
67	Crowded Field Galaxy Photometry: Precision Colors in the CLASH Clusters. Astrophysical Journal, 2017, 848, 37.	4.5	23
68	CLUMP-3D: three-dimensional lensing and multi-probe analysis of MACS J1206.2â^'0847, a remarkably regular cluster. Monthly Notices of the Royal Astronomical Society, 2017, 467, 3801-3826.	4.4	21
69	The Double Galaxy Cluster A2465. III. X-Ray and Weak-lensing Observations ^{â^—} . Astrophysical Journal, 2017, 844, 67.	4.5	4
70	Joint Strong and Weak Lensing Analysis of the Massive Cluster Field J0850+3604. Astrophysical Journal, 2017, 844, 127.	4.5	7
71	VLA Radio Observations of the HST Frontier Fields Cluster Abell 2744: The Discovery of New Radio Relics. Astrophysical Journal, 2017, 845, 81.	4.5	41
72	PROBING WHIM AROUND GALAXY CLUSTERS WITH FAST RADIO BURSTS AND THE SUNYAEV–ZEL'DOVICH EFFECT. Astrophysical Journal, 2017, 834, 13.	4.5	16

#	Article	IF	CITATIONS
73	Chandra and JVLA Observations of HST Frontier Fields Cluster MACS J0717.5+3745. Astrophysical Journal, 2017, 835, 197.	4.5	46
74	Precise clustering and density evolution of redMaPPer galaxy clusters versus MXXL simulation. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2658-2674.	4.4	13
75	CLASH: accurate photometric redshifts with 14 HST bands in massive galaxy cluster cores. Monthly Notices of the Royal Astronomical Society, 2017, 470, 95-113.	4.4	39
76	CLASH-VLT: constraints on <i>f</i> (<i>R</i>) gravity models with galaxy clusters using lensing and kinematic analyses. Journal of Cosmology and Astroparticle Physics, 2017, 2017, 023-023.	5.4	24
77	Mass distribution in the core of MACS J1206. Astronomy and Astrophysics, 2017, 607, A93.	5.1	50
78	Lensing Constraints on the Mass Profile Shape and the Splashback Radius of Galaxy Clusters ^{â^—} . Astrophysical Journal, 2017, 836, 231.	4.5	68
79	AMiBA: CLUSTER SUNYAEV–ZEL'DOVICH EFFECT OBSERVATIONS WITH THE EXPANDED 13-ELEMENT ARRA Astrophysical Journal, 2016, 830, 91.	Y. 4.5	1
80	CLASH-VLT: A highly precise strong lensing model of the galaxy cluster RXC J2248.7â^'4431 (Abell S1063) and prospects for cosmography. Astronomy and Astrophysics, 2016, 587, A80.	5.1	98
81	THE DISCOVERY OF LENSED RADIO AND X-RAY SOURCES BEHIND THE FRONTIER FIELDS CLUSTER MACSÂJ0717.5+3745 WITH THE JVLA AND CHANDRA. Astrophysical Journal, 2016, 817, 98.	4.5	17
82	CLASH-VLT: testing the nature of gravity with galaxy cluster mass profiles. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 023-023.	5.4	26
83	CLASH-VLT: DISSECTING THE FRONTIER FIELDS GALAXY CLUSTER MACS J0416.1-2403 WITH â ⁻¹ /4800 SPECTRA O MEMBER GALAXIES. Astrophysical Journal, Supplement Series, 2016, 224, 33.	F 7.7	82
84	CLASH: JOINT ANALYSIS OF STRONG-LENSING, WEAK-LENSING SHEAR, AND MAGNIFICATION DATA FOR 20 GALAXY CLUSTERS*. Astrophysical Journal, 2016, 821, 116.	4.5	160
85	FRONTIER FIELDS: SUBARU WEAK-LENSING ANALYSIS OF THE MERGING GALAXY CLUSTER A2744*. Astrophysical Journal, 2016, 817, 24.	4.5	54
86	THE DETECTION AND STATISTICS OF GIANT ARCS BEHIND CLASH CLUSTERS. Astrophysical Journal, 2016, 817, 85.	4.5	23
87	Dark matter fraction of low-mass cluster members probed by galaxy-scale strong lensing. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1493-1503.	4.4	8
88	Central mass profiles of the nearby cool-core galaxy clusters Hydra A and A478. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4475-4487.	4.4	14
89	FRONTIER FIELDS CLUSTERS: DEEP CHANDRA OBSERVATIONS OF THE COMPLEX MERGER MACSÂJ1149.6+2223. Astrophysical Journal, 2016, 819, 113.	4.5	16
90	Radio relics tracing the projected mass distribution in CIZA J2242.8+5301. Publication of the Astronomical Society of Japan, 2015, 67, .	2.5	16

#	Article	IF	CITATIONS
91	FRONTIER FIELDS CLUSTERS: <i>CHANDRA</i> AND JVLA VIEW OF THE PRE-MERGING CLUSTER MACS J0416.1-2403. Astrophysical Journal, 2015, 812, 153.	4.5	44
92	MEASUREMENTS OF THE SUNYAEV–ZEL'DOVICH EFFECT IN MACS J0647.7+7015 AND MACS J1206.2–08 HIGH ANGULAR RESOLUTION WITH MUSTANG. Astrophysical Journal, 2015, 809, 185.	47 AT 4.5	12
93	Comparing gravitational redshifts of SDSS galaxy clusters with the magnified redshift enhancement of background BOSS galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1999-2012.	4.4	23
94	CLASH-VLT: Substructure in the galaxy cluster MACS J1206.2-0847 from kinematics of galaxy populations. Astronomy and Astrophysics, 2015, 579, A4.	5.1	45
95	CLASH-VLT: INSIGHTS ON THE MASS SUBSTRUCTURES IN THE FRONTIER FIELDS CLUSTER MACS J0416.1–2403 THROUGH ACCURATE STRONG LENS MODELING. Astrophysical Journal, 2015, 800, 38.	4.5	132
96	A free-form lensing grid solution for A1689 with new multiple images. Monthly Notices of the Royal Astronomical Society, 2015, 446, 683-704.	4.4	40
97	CLASH: EXTREME EMISSION-LINE GALAXIES AND THEIR IMPLICATION ON SELECTION OF HIGH-REDSHIFT GALAXIES. Astrophysical Journal, 2015, 801, 12.	4.5	10
98	THREE-DIMENSIONAL MULTI-PROBE ANALYSIS OF THE GALAXY CLUSTER A1689. Astrophysical Journal, 2015, 806, 207.	4.5	56
99	GALAXY CLUSTER SCALING RELATIONS BETWEEN BOLOCAM SUNYAEV–ZEL'DOVICH EFFECT AND <i>CHANDRA</i> X-RAY MEASUREMENTS. Astrophysical Journal, 2015, 806, 18.	4.5	48
100	CLASH: THE CONCENTRATION-MASS RELATION OF GALAXY CLUSTERS. Astrophysical Journal, 2015, 806, 4.	4.5	170
101	<i>HUBBLE SPACE TELESCOPE </i> COMBINED STRONG AND WEAK LENSING ANALYSIS OF THE CLASH SAMPLE: MASS AND MAGNIFICATION MODELS AND SYSTEMATIC UNCERTAINTIES. Astrophysical Journal, 2015, 801, 44.	4.5	207
102	LoCuSS: Testing hydrostatic equilibrium in galaxy clusters. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 456, L74-L78.	3.3	93
103	Intracluster light properties in the CLASH-VLT cluster MACS J1206.2-0847. Astronomy and Astrophysics, 2014, 565, A126.	5.1	63
104	THE MUSIC OF CLASH: PREDICTIONS ON THE CONCENTRATION-MASS RELATION. Astrophysical Journal, 2014, 797, 34.	4.5	115
105	Universal profiles of the intracluster medium from Suzaku X-ray and Subaru weak-lensing observations. Publication of the Astronomical Society of Japan, 2014, 66, .	2.5	34
106	CLASH-X: A COMPARISON OF LENSING AND X-RAY TECHNIQUES FOR MEASURING THE MASS PROFILES OF GALAXY CLUSTERS. Astrophysical Journal, 2014, 794, 136.	4.5	105
107	CLASH: EXTENDING GALAXY STRONG LENSING TO SMALL PHYSICAL SCALES WITH DISTANT SOURCES HIGHLY MAGNIFIED BY GALAXY CLUSTER MEMBERS. Astrophysical Journal, 2014, 786, 11.	4.5	13
108	A CENSUS OF STAR-FORMING GALAXIES IN THE <i>Z </i> A CENSUS OF STAR-FORMING GALAXIES IN THE <i>Z </i> A CENSUS OF STAR-FORMING GALAXIES IN THE <i>Z </i> A CENSUS OF STAR-FORMING GALAXIES IN THE <i>Z </i> A CENSUS OF STAR-FORMATIONS OVER 19 CLASH CLUSTERS: THREE CANDIDATE <i>Z </i> A CENSUS OF STAR-FORMATIONS OVER 19 CLASH CLUSTERS: THREE CANDIDATE <i>Z </i> A CENSUS OF STAR-FORMATIONS OVER 19 CLASH CLUSTERS: THREE CANDIDATE <i>Z </i> A CENSUS OF STAR-FORMATIONS OVER 19 CLASH CLUSTERS: THREE CANDIDATE <i>Z </i> A CENSUS OF STAR-FORMATIONS OVER 19 CLASH CLUSTERS: THREE CANDIDATE <i>Z </i> A CENSUS OF STAR-FORMATION RATE DENSITY AT <i>Z </i> A Strophysical Journal, 2014, 795, 126. 	² S. 4.5	159

#	Article	IF	CITATIONS
109	CLASH: A CENSUS OF MAGNIFIED STAR-FORMING GALAXIES AT <i>z</i> â ¹ /4 6-8. Astrophysical Journal, 2014, 792, 76.	' 4.5	98
110	EVIDENCE FOR UBIQUITOUS HIGH-EQUIVALENT-WIDTH NEBULAR EMISSION IN <i>z</i> àî¼ 7 GALAXIES: TOWAR A CLEAN MEASUREMENT OF THE SPECIFIC STAR-FORMATION RATE USING A SAMPLE OF BRIGHT, MAGNIFIED GALAXIES. Astrophysical Journal, 2014, 784, 58.	D 4.5	232
111	CLASH: WEAK-LENSING SHEAR-AND-MAGNIFICATION ANALYSIS OF 20 GALAXY CLUSTERS. Astrophysical Journal, 2014, 795, 163.	4.5	233
112	CLASH: z â^¼ 6 young galaxy candidate quintuply lensed by the frontier field cluster RXC J2248.7â^4431. Monthly Notices of the Royal Astronomical Society, 2014, 438, 1417-1434.	4.4	49
113	CLASH-VLT: CONSTRAINTS ON THE DARK MATTER EQUATION OF STATE FROM ACCURATE MEASUREMENTS OF GALAXY CLUSTER MASS PROFILES. Astrophysical Journal Letters, 2014, 783, L11.	8.3	23
114	THREE GRAVITATIONALLY LENSED SUPERNOVAE BEHIND CLASH GALAXY CLUSTERS. Astrophysical Journal, 2014, 786, 9.	4.5	45
115	CLASH: Photometric redshifts with 16 HST bands in galaxy cluster fields. Astronomy and Astrophysics, 2014, 562, A86.	5.1	37
116	CLASH-VLT: The stellar mass function and stellar mass density profile of the <i>z</i> = 0.44 cluster of galaxies MACS J1206.2-0847. Astronomy and Astrophysics, 2014, 571, A80.	5.1	50
117	LoCuSS: THE MASS DENSITY PROFILE OF MASSIVE GALAXY CLUSTERS AT <i>z</i> = 0.2 [,] . Astrophysical Journal Letters, 2013, 769, L35.	8.3	108
118	PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMIBA-13 COPLANAR INTERFEROMETER. Astrophysical Journal, 2013, 769, 71.	4.5	1
119	THE WEIGHT OF EMPTINESS: THE GRAVITATIONAL LENSING SIGNAL OF STACKED VOIDS. Astrophysical Journal Letters, 2013, 762, L20.	8.3	76
120	CLASH: COMPLETE LENSING ANALYSIS OF THE LARGEST COSMIC LENS MACS J0717.5+3745 AND SURROUNDING STRUCTURES. Astrophysical Journal, 2013, 777, 43.	4.5	79
121	A MEASUREMENT OF THE KINETIC SUNYAEV-ZEL'DOVICH SIGNAL TOWARD MACS J0717.5+3745. Astrophysical Journal, 2013, 778, 52.	4.5	70
122	GALAXY HALO TRUNCATION AND GIANT ARC SURFACE BRIGHTNESS RECONSTRUCTION IN THE CLUSTER MACSJ1206.2-0847. Astrophysical Journal, 2013, 774, 124.	4.5	24
123	MODEL-FREE MULTI-PROBE LENSING RECONSTRUCTION OF CLUSTER MASS PROFILES. Astrophysical Journal, 2013, 769, 13.	4.5	29
124	CLASH: THE ENHANCED LENSING EFFICIENCY OF THE HIGHLY ELONGATED MERGING CLUSTER MACS J0416.1–2403. Astrophysical Journal Letters, 2013, 762, L30.	8.3	153
125	Mass, shape and thermal properties of Abell 1689 using a multiwavelength X-ray, lensing and Sunyaev–Zel'dovich analysis. Monthly Notices of the Royal Astronomical Society, 2013, 428, 2241-2254.	4.4	46
126	<i>SUZAKU</i> OBSERVATIONS OF THE OUTSKIRTS OF A1835: DEVIATION FROM HYDROSTATIC EQUILIBRIUM. Astrophysical Journal, 2013, 766, 90.	4.5	44

#	Article	IF	CITATIONS
127	THE CONTRIBUTION OF HALOS WITH DIFFERENT MASS RATIOS TO THE OVERALL GROWTH OF CLUSTER-SIZED HALOS. Astrophysical Journal, 2013, 776, 91.	4.5	33
128	TANGENTIAL VELOCITY OF THE DARK MATTER IN THE BULLET CLUSTER FROM PRECISE LENSED IMAGE REDSHIFTS. Astrophysical Journal, 2013, 774, 70.	4.5	15
129	On mass and shape of galaxy clusters by comparison of Xâ€ray, Sunyaevâ€Zel'dovich effect, and gravitational lensing observations. Astronomische Nachrichten, 2013, 334, 445-448.	1.2	2
130	CLASH-VLT: The mass, velocity-anisotropy, and pseudo-phase-space density profiles of the <i>z</i> = 0.44 galaxy cluster MACS J1206.2-0847. Astronomy and Astrophysics, 2013, 558, A1.	5.1	145
131	THE CONTRIBUTION OF RADIO GALAXY CONTAMINATION TO MEASUREMENTS OF THE SUNYAEV-ZEL'DOVICH DECREMENT IN MASSIVE GALAXY CLUSTERS AT 140 GHz WITH BOLOCAM. Astrophysical Journal, 2013, 764, 152.	4.5	25
132	SUNYAEV-ZEL'DOVICH-MEASURED PRESSURE PROFILES FROM THE BOLOCAM X-RAY/SZ GALAXY CLUSTER SAMPLE. Astrophysical Journal, 2013, 768, 177.	4.5	88
133	CLUSTER LENSING PROFILES DERIVED FROM A REDSHIFT ENHANCEMENT OF MAGNIFIED BOSS-SURVEY GALAXIES. Astrophysical Journal, 2013, 772, 65.	4.5	19
134	CLASH-VLT: spectroscopic confirmation of a <i>z</i> = 6.11 quintuply lensed galaxy in the Frontier Fields cluster RXC J2248.7-4431. Astronomy and Astrophysics, 2013, 559, L9.	5.1	46
135	THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW. Astrophysical Journal, Supplement Series, 2012, 199, 25.	7.7	659
136	Star Formation and AGN Activity in Galaxies Classified Using the 1.6 μm Bump and PAH Features at <i>z</i> = 0.4–2. Publication of the Astronomical Society of Japan, 2012, 64, .	2.5	31
137	A MULTI-WAVELENGTH STUDY OF THE SUNYAEV-ZEL'DOVICH EFFECT IN THE TRIPLE-MERGER CLUSTER MACS J0717.5+3745 WITH MUSTANG AND BOLOCAM. Astrophysical Journal, 2012, 761, 47.	4.5	59
138	CLASH: NEW MULTIPLE IMAGES CONSTRAINING THE INNER MASS PROFILE OF MACS J1206.2–0847. Astrophysical Journal, 2012, 749, 97.	4.5	58
139	BOLOCAM OBSERVATIONS OF TWO UNCONFIRMED GALAXY CLUSTER CANDIDATES FROM THE <i>PLANCK</i> EARLY SUNYAEV-ZEL'DOVICH SAMPLE. Astrophysical Journal Letters, 2012, 749, L15.	8.3	11
140	CLASH: MASS DISTRIBUTION IN AND AROUND MACS J1206.2-0847 FROM A FULL CLUSTER LENSING ANALYSIS. Astrophysical Journal, 2012, 755, 56.	4.5	101
141	CLASH: PRECISE NEW CONSTRAINTS ON THE MASS PROFILE OF THE GALAXY CLUSTER A2261. Astrophysical Journal, 2012, 757, 22.	4.5	112
142	Miscentring in galaxy clusters: dark matter to brightest cluster galaxy offsets in 10 000 Sloan Digital Sky Survey clusters. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2944-2956.	4.4	54
143	A magnified young galaxy from about 500 million years after the Big Bang. Nature, 2012, 489, 406-408.	27.8	273
144	Cluster-cluster lensing and the case of Abell 383. Monthly Notices of the Royal Astronomical Society, 2012, 420, 1621-1629.	4.4	10

#	Article	IF	CITATIONS
145	The universal Einstein radius distribution from 10 000 SDSS clusters. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2308-2324.	4.4	39
146	1.2Âm Shielded Cassegrain Antenna for Close-Packed Radio Interferometer. Publications of the Astronomical Society of the Pacific, 2011, 123, 198-212.	3.1	2
147	CLUSTER MASS PROFILES FROM A BAYESIAN ANALYSIS OF WEAK-LENSING DISTORTION AND MAGNIFICATION MEASUREMENTS: APPLICATIONS TO SUBARU DATA. Astrophysical Journal, 2011, 729, 127.	4.5	125
148	THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH <i>HUBBLE </i> (CLASH): STRONG-LENSING ANALYSIS OF A383 FROM 16-BAND <i>HST </i> /WFC3/ACS IMAGING. Astrophysical Journal, 2011, 742, 117.	4.5	63
149	A PRECISE CLUSTER MASS PROFILE AVERAGED FROM THE HIGHEST-QUALITY LENSING DATA. Astrophysical Journal, 2011, 738, 41.	4.5	112
150	Strong-lensing analysis of MS 1358.4+6245: New multiple images and implications for the well-resolved z= 4.92 galaxy. Monthly Notices of the Royal Astronomical Society, 2011, 413, 1753-1763.	4.4	29
151	A weak lensing detection of the cosmological distance-redshift relation behind three massive clustersâ~ Monthly Notices of the Royal Astronomical Society, 2011, 414, 1840-1850.	4.4	27
152	Triaxiality and non-thermal gas pressure in Abell 1689. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2567-2573.	4.4	35
153	Weak- and strong-lensing analyses of the triaxial matter distribution of Abell 1689â~ Monthly Notices of the Royal Astronomical Society, 2011, 416, 3187-3200.	4.4	42
154	AMiBA: SCALING RELATIONS BETWEEN THE INTEGRATED COMPTON- <i>y</i> AND X-RAY-DERIVED TEMPERATURE, MASS, AND LUMINOSITY. Astrophysical Journal, 2010, 716, 758-765.	4.5	14
155	LoCuSS: CALIBRATING MASS-OBSERVABLE SCALING RELATIONS FOR CLUSTER COSMOLOGY WITH SUBARU WEAK-LENSING OBSERVATIONS. Astrophysical Journal, 2010, 721, 875-885.	4.5	96
156	AMiBA WIDEBAND ANALOG CORRELATOR. Astrophysical Journal, 2010, 716, 746-757.	4.5	17
157	AMiBA: SUNYAEV-ZEL'DOVICH EFFECT-DERIVED PROPERTIES AND SCALING RELATIONS OF MASSIVE GALAXY CLUSTERS. Astrophysical Journal, 2010, 713, 584-591.	4.5	7
158	CONTAMINATION OF THE CENTRAL SUNYAEV-ZEL'DOVICH DECREMENTS IN AMIBA GALAXY CLUSTER OBSERVATIONS. Astrophysical Journal, 2010, 720, 608-613.	4.5	3
159	<i>SUZAKU</i> OBSERVATION OF A1689: ANISOTROPIC TEMPERATURE AND ENTROPY DISTRIBUTIONS ASSOCIATED WITH THE LARGE-SCALE STRUCTURE. Astrophysical Journal, 2010, 714, 423-441.	4.5	116
160	CONSTRAINING INTRACLUSTER GAS MODELS WITH AMiBA13. Astrophysical Journal, 2010, 723, 1272-1285.	4.5	10
161	Full lensing analysis of Abell 1703: comparison of independent lens-modelling techniques. Monthly Notices of the Royal Astronomical Society, 2010, 408, 1916-1927.	4.4	43
162	Detailed cluster mass and light profiles of A1703, A370 and RXJ1347â^'11 from deep Subaru imaging. Monthly Notices of the Royal Astronomical Society, 2010, , .	4.4	49

#	Article	IF	CITATIONS
163	TESTING STRICT HYDROSTATIC EQUILIBRIUM IN SIMULATED CLUSTERS OF GALAXIES: IMPLICATIONS FOR A1689. Astrophysical Journal Letters, 2010, 724, L1-L4.	8.3	27
164	THE MASS STRUCTURE OF THE GALAXY CLUSTER Cl0024+1654 FROM A FULL LENSING ANALYSIS OF JOINT SUBARU AND ACS/NIC3 OBSERVATIONS. Astrophysical Journal, 2010, 714, 1470-1496.	4.5	74
165	LoCuSS: Subaru Weak Lensing Study of 30 Galaxy Clusters. Publication of the Astronomical Society of Japan, 2010, 62, 811-870.	2.5	245
166	ARRAY FOR MICROWAVE BACKGROUND ANISOTROPY: OBSERVATIONS, DATA ANALYSIS, AND RESULTS FOR SUNYAEV-ZEL'DOVICH EFFECTS. Astrophysical Journal, 2009, 694, 1619-1628.	4.5	22
167	AMiBA: SYSTEM PERFORMANCE. Astrophysical Journal, 2009, 694, 1629-1636.	4.5	15
168	TESTS OF AMiBA DATA INTEGRITY. Astrophysical Journal, 2009, 694, 1637-1642.	4.5	14
169	DYNAMICAL STUDY OF A1689 FROM WIDE-FIELD VLT/VIMOS SPECTROSCOPY: MASS PROFILE, CONCENTRATION PARAMETER, AND VELOCITY ANISOTROPY. Astrophysical Journal, 2009, 701, 1336-1346.	4.5	64
170	AMiBA: BROADBAND HETERODYNE COSMIC MICROWAVE BACKGROUND INTERFEROMETRY. Astrophysical Journal, 2009, 694, 1664-1669.	4.5	25
171	MASS AND HOT BARYONS IN MASSIVE GALAXY CLUSTERS FROM SUBARU WEAK-LENSING AND AMIBA SUNYAEV-ZEL'DOVICH EFFECT OBSERVATIONS. Astrophysical Journal, 2009, 694, 1643-1663.	4.5	99
172	LoCuSS: luminous infrared galaxies in the merging cluster Abell 1758 at <i>z</i> = 0.28. Monthly Notices of the Royal Astronomical Society, 2009, 396, 1297-1307.	4.4	43
173	New multiply-lensed galaxies identified in ACS/NIC3 observations of Cl0024+1654 using an improved mass model. Monthly Notices of the Royal Astronomical Society, 2009, 396, 1985-2002.	4.4	162
174	THE YUAN-TSEH LEE ARRAY FOR MICROWAVE BACKGROUND ANISOTROPY. Astrophysical Journal, 2009, 694, 1610-1618.	4.5	35
175	THE AMIBA HEXAPOD TELESCOPE MOUNT. Astrophysical Journal, 2009, 694, 1670-1684.	4.5	34
176	AMIBA: FIRST-YEAR RESULTS FOR SUNYAEV-ZEL'DOVICH EFFECT. Modern Physics Letters A, 2008, 23, 1675-1686.	1.2	6
177	THE YUAN TSEH LEE AMIBA PROJECT. Modern Physics Letters A, 2008, 23, 1243-1251.	1.2	2
178	A MOMENT METHOD FOR MEASURING THE HIGHER-ORDER WEAK GRAVITATIONAL LENSING EFFECTS. Modern Physics Letters A, 2008, 23, 1506-1513.	1.2	1
179	USING WEAK-LENSING DILUTION TO MEASURE LIGHT PROPERTIES OF A1689. Modern Physics Letters A, 2008, 23, 1521-1528.	1.2	1
180	Subaru Weak Lensing Study of Seven Merging Clusters: Distributions of Mass and Baryons. Publication of the Astronomical Society of Japan, 2008, 60, 345-375.	2.5	147

#	Article	IF	CITATIONS
181	AMiBA first year observation. , 2008, , .		3
182	Comparison of Cluster Lensing Profiles with \hat{I} CDM Predictions. Astrophysical Journal, 2008, 685, L9-L12.	4.5	127
183	Combining Lens Distortion and Depletion to Map the Mass Distribution of A1689. Astrophysical Journal, 2008, 684, 177-203.	4.5	121
184	Platform deformation refined pointing and phase correction for the AMiBA hexapod telescope. Proceedings of SPIE, 2008, , .	0.8	3
185	A Method for Weakâ€Lensing Flexion Analysis by the HOLICs Moment Approach. Astrophysical Journal, 2008, 680, 1-16.	4.5	53
186	PROBING THE CLUSTER MASS DISTRIBUTION USING SUBARU WEAK LENSING DATA. Modern Physics Letters A, 2007, 22, 2099-2106.	1.2	13
187	A New Measure for Weak‣ensing Flexion. Astrophysical Journal, 2007, 660, 995-1002.	4.5	57
188	Using Weakâ€Lensing Dilution to Improve Measurements of the Luminous and Dark Matter in A1689. Astrophysical Journal, 2007, 663, 717-733.	4.5	62
189	Observational Constraints on the ICM Temperature Enhancement by Cluster Mergers. Globular Clusters - Guides To Galaxies, 2007, , 278-281.	0.1	0
190	Progress of the array of microwave background anisotropy (AMiBA). , 2006, , .		5
191	Initial operation of the array for microwave background anisotropy (AMiBA). , 2006, 6275, 487.		3
192	The Surprisingly Steep Mass Profile of A1689, from a Lensing Analysis of Subaru Images. Astrophysical Journal, 2005, 619, L143-L146.	4.5	205
193	Can the Steep Mass Profile of A1689 Be Explained by a Triaxial Dark Halo?. Astrophysical Journal, 2005, 632, 841-846.	4.5	134
194	The build-up of the colour-magnitude relation as a function of environment. Monthly Notices of the Royal Astronomical Society, 2005, 362, 268-288.	4.4	169
195	Panoramic Views of Cluster-Scale Assemblies Explored by Subaru Wide-Field Imaging. Publication of the Astronomical Society of Japan, 2005, 57, 309-323.	2.5	47
196	Discovery of a Strongly Lensed Galaxy at <i>z</i> =3.9 behind a <i>z</i> =0.83 Galaxy Cluster. Publication of the Astronomical Society of Japan, 2005, 57, 877-880.	2.5	8
197	THE MASS PROFILE OF ABELL 1689 FROM A LENSING ANALYSIS OF DEEP WIDE FIELD SUBARU IMAGES. Journal of the Korean Astronomical Society, 2005, 38, 191-195.	1.5	3
198	THE AMIBA PROJECT. Modern Physics Letters A, 2004, 19, 993-1000.	1.2	10

#	Article	IF	CITATIONS
199	SIMULATION OF A COMBINED SZE AND WEAK LENSING CLUSTER SURVEY FOR AMIBA EXPERIMENT. Modern Physics Letters A, 2004, 19, 1027-1030.	1.2	6
200	Observational Strategies of Cosmic Microwave Background Temperature and Polarization Interferometry Experiments. Astrophysical Journal, 2003, 589, 67-81.	4.5	20
201	The Topology of a Weak Lensing Field in the Neighborhood of MS 1054â^'03. Astrophysical Journal, 2003, 582, L67-L70.	4.5	6
202	Spontaneous reduction of the heat conductivity by a temperature gradient-driven instability in electron-ion plasmas. Earth, Planets and Space, 2001, 53, 689-693.	2.5	0
203	A Possible Route to Spontaneous Reduction of the Heat Conductivity by a Temperature Gradient–driven Instability in Electronâ€lon Plasmas. Astrophysical Journal, 2000, 533, 84-94.	4.5	28
204	On the origin of the metallicity gradient in clusters of galaxies. Advances in Space Research, 2000, 25, 617-620.	2.6	1
205	Detection of Dark Matter Concentrations in the Field of Cl 1604+4304 from Weak Lensing Analysis. Astrophysical Journal, 2000, 539, L5-L8.	4.5	44
206	Cluster Mass Reconstruction by a Weak Shear Field . Progress of Theoretical Physics Supplement, 1999, 133, 53-84.	0.1	16