Martin Steinbacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5839355/publications.pdf

Version: 2024-02-01

93 papers 5,200 citations

76294 40 h-index 65 g-index

144 all docs

144 docs citations

times ranked

144

5552 citing authors

#	Article	IF	CITATIONS
1	Atmospheric molecular hydrogen (H ₂): observations at the high-altitude site Jungfraujoch, Switzerland. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 64.	0.8	16
2	Observation of atmospheric CO ₂ and CO at Shangri-La station: results from the only regional station located at southwestern China. Tellus, Series B: Chemical and Physical Meteorology, 2022, 68, 28506.	0.8	19
3	The Integrated Carbon Observation System in Europe. Bulletin of the American Meteorological Society, 2022, 103, E855-E872.	1.7	44
4	Sensitivity of biomass burning emissions estimates to land surface information. Biogeosciences, 2022, 19, 2059-2078.	1.3	5
5	The diurnal and seasonal variability of ice-nucleating particles at the High Altitude Station Jungfraujoch (3580 m a.s.l.), Switzerland. Atmospheric Chemistry and Physics, 2022, 22, 7557-7573.	1.9	О
6	Assessing local CO ₂ contamination revealed by two near-by high altitude records at Jungfraujoch, Switzerland. Environmental Research Letters, 2021, 16, 044037.	2.2	8
7	Carbonaceous aerosol composition in air masses influenced by large-scale biomass burning: a case study in northwestern Vietnam. Atmospheric Chemistry and Physics, 2021, 21, 8293-8312.	1.9	11
8	Toward a definition of Essential Mountain Climate Variables. One Earth, 2021, 4, 805-827.	3.6	26
9	An algorithm to detect non-background signals in greenhouse gas time series from European tall tower and mountain stations. Atmospheric Measurement Techniques, 2021, 14, 6119-6135.	1.2	1
10	Evaluation and optimization of ICOS atmosphere station data as part of the labeling process. Atmospheric Measurement Techniques, 2021, 14, 89-116.	1.2	13
11	Sources and nature of ice-nucleating particles in the free troposphere at Jungfraujoch in winter 2017. Atmospheric Chemistry and Physics, 2021, 21, 16925-16953.	1.9	6
12	The contribution of Saharan dust to the ice-nucleating particle concentrations at the High Altitude Station Jungfraujoch (3580 m a.s.l.), Switzerland. Atmospheric Chemistry and Physics, 2021, 21, 18029-18053.	1.9	11
13	Zonal Similarity of Longâ€Term Changes and Seasonal Cycles of Baseline Ozone at Northern Midlatitudes. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031908.	1.2	27
14	The isotopic composition of atmospheric nitrous oxide observed at the high-altitude research station Jungfraujoch, Switzerland. Atmospheric Chemistry and Physics, 2020, 20, 6495-6519.	1.9	11
15	Multi-decadal surface ozone trends at globally distributed remote locations. Elementa, 2020, 8, .	1.1	54
16	A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories. Atmospheric Measurement Techniques, 2020, 13, 4353-4392.	1.2	65
17	Recent advances in measurement techniques for atmospheric carbon monoxide and nitrous oxide observations. Atmospheric Measurement Techniques, 2019, 12, 5863-5878.	1.2	17
18	Tropospheric Ozone Assessment Report: Tropospheric ozone from 1877 to 2016, observed levels, trends and uncertainties. Elementa, 2019, 7, .	1.1	103

#	Article	IF	Citations
19	Effect of Large-scale Biomass Burning on Aerosol Optical Properties at the GAW Regional Station Pha Din, Vietnam. Aerosol and Air Quality Research, 2019, 19, 1172-1187.	0.9	16
20	Low number concentration of ice nucleating particles in an aged smoke plume. Quarterly Journal of the Royal Meteorological Society, 2018, 144, 1991-1994.	1.0	2
21	Inverse modelling of European CH ₄ emissions during 2006–2012 using different inverse models and reassessed atmospheric observations. Atmospheric Chemistry and Physics, 2018, 18, 901-920.	1.9	77
22	The MUSICA IASI CH ₄ and N ₂ O products and their comparison to HIPPO, GAW and NDACC FTIR references. Atmospheric Measurement Techniques, 2018, 11, 4171-4215.	1,2	18
23	Peroxy acetyl nitrate (PAN) measurements at northern midlatitude mountain sites in April: a constraint on continental source–receptor relationships. Atmospheric Chemistry and Physics, 2018, 18, 15345-15361.	1.9	3
24	Impact of Air Mass Conditions and Aerosol Properties on Ice Nucleating Particle Concentrations at the High Altitude Research Station Jungfraujoch. Atmosphere, 2018, 9, 363.	1.0	18
25	Adaptive selection of diurnal minimum variation: a statistical strategy to obtain representative atmospheric CO ₂ data and its application to European elevated mountain stations. Atmospheric Measurement Techniques, 2018, 11, 1501-1514.	1.2	16
26	Background Freeâ€Tropospheric Ice Nucleating Particle Concentrations at Mixedâ€Phase Cloud Conditions. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,506.	1.2	24
27	Inversion Approach to Validate Mercury Emissions Based on Background Air Monitoring at the High Altitude Research Station Jungfraujoch (3580 m). Environmental Science & Enp; Technology, 2017, 51, 2846-2853.	4.6	14
28	The Horizontal Ice Nucleation Chamber (HINC): INP measurements at conditions relevant for mixed-phase clouds at the High Altitude Research Station Jungfraujoch. Atmospheric Chemistry and Physics, 2017, 17, 15199-15224.	1.9	41
29	Surface ozone in the Southern Hemisphere: 20Âyears of data from aÂsite with a unique setting in El Tololo, Chile. Atmospheric Chemistry and Physics, 2017, 17, 6477-6492.	1.9	15
30	Estimation of the fossil fuel component in atmospheric CO<sub>2</sub> based on radiocarbon measurements at the Berom $\tilde{A}^{1}/4$ nster tall tower, Switzerland. Atmospheric Chemistry and Physics, 2017, 17, 10753-10766.	1.9	18
31	Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations. Elementa, 2017, 5, .	1.1	172
32	A Review of More than 20 Years of Aerosol Observation at the High Altitude Research Station Jungfraujoch, Switzerland (3580 m asl). Aerosol and Air Quality Research, 2016, 16, 764-788.	0.9	55
33	Assessment of recent advances in measurement techniques for atmospheric carbon dioxide and methane observations. Atmospheric Measurement Techniques, 2016, 9, 4737-4757.	1.2	31
34	Ice Nucleating Particle Measurements at 241 K during Winter Months at 3580 m MSL in the Swiss Alps. Journals of the Atmospheric Sciences, 2016, 73, 2203-2228.	0.6	59
35	Contribution of new particle formation to the total aerosol concentration at the highâ€altitude site Jungfraujoch (3580ÂmÂasl, Switzerland). Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,692.	1.2	21
36	Predicting abundance and variability of ice nucleating particles in precipitation at the high-altitude observatory Jungfraujoch. Atmospheric Chemistry and Physics, 2016, 16, 8341-8351.	1.9	16

#	Article	IF	Citations
37	Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling. Atmospheric Chemistry and Physics, 2016, 16, 3683-3710.	1.9	103
38	Chemical and physical influences on aerosol activation in liquid clouds: a study based on observations from the Jungfraujoch, Switzerland. Atmospheric Chemistry and Physics, 2016, 16, 4043-4061.	1.9	14
39	Towards a Universal "Baseline―Characterisation of Air Masses for High- and Low-Altitude Observing Stations Using Radon-222. Aerosol and Air Quality Research, 2016, 16, 885-899.	0.9	42
40	Analysis of longâ€term aerosol size distribution data from Jungfraujoch with emphasis on free tropospheric conditions, cloud influence, and air mass transport. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9459-9480.	1.2	69
41	Top-down estimates of European CH ₄ and N ₂ O emissions based on four different inverse models. Atmospheric Chemistry and Physics, 2015, 15, 715-736.	1.9	92
42	Fourteen months of on-line measurements of the non-refractory submicron aerosol at the Jungfraujoch (3580 m a.s.l.) $\hat{a} \in \text{``chemical composition, origins and organic aerosol sources.}$ Atmospheric Chemistry and Physics, 2015, 15, 11373-11398.	1.9	55
43	Comparison of the regional CO ₂ mole fraction filtering approaches at a WMO/GAW regional station in China. Atmospheric Measurement Techniques, 2015, 8, 5301-5313.	1.2	27
44	Comparison of continuous in situ CO ₂ observations at Jungfraujoch using two different measurement techniques. Atmospheric Measurement Techniques, 2015, 8, 57-68.	1.2	30
45	Long-term surface ozone variability at Mt. Cimone WMO/GAW global station (2165 m a.s.l., Italy). Atmospheric Environment, 2015, 101, 23-33.	1.9	42
46	Tropospheric CH ₄ signals as observed by NDACC FTIR at globally distributed sites and comparison to GAW surface in situ measurements. Atmospheric Measurement Techniques, 2014, 7, 2337-2360.	1.2	38
47	In situ measurement of atmospheric CO ₂ at the four WMO/GAW stations in China. Atmospheric Chemistry and Physics, 2014, 14, 2541-2554.	1.9	102
48	Longâ€ŧerm changes in lower tropospheric baseline ozone concentrations: Comparing chemistry limate models and observations at northern midlatitudes. Journal of Geophysical Research D: Atmospheres, 2014, 119, 5719-5736.	1.2	149
49	Retrieval of methane source strengths in Europe using a simple modeling approach to assess the potential of spaceborne lidar observations. Atmospheric Chemistry and Physics, 2014, 14, 2625-2637.	1.9	5
50	Analysis of elevated springtime levels of Peroxyacetyl nitrate (PAN) at the high Alpine research sites Jungfraujoch and Zugspitze. Atmospheric Chemistry and Physics, 2014, 14, 12553-12571.	1.9	27
51	Surface-to-mountaintop transport characterised by radon observations at the Jungfraujoch. Atmospheric Chemistry and Physics, 2014, 14, 12763-12779.	1.9	45
52	TransCom N ₂ O model inter-comparison – Part 2: Atmospheric inversion estimates of N ₂ O emissions. Atmospheric Chemistry and Physics, 2014, 14, 6177-6194.	1.9	49
53	Lower tropospheric ozone at northern midlatitudes: Changing seasonal cycle. Geophysical Research Letters, 2013, 40, 1631-1636.	1.5	95
54	Transport of PAN and NOy from different source regions to the Swiss high alpine site Jungfraujoch. Atmospheric Environment, 2013, 64, 103-115.	1.9	31

#	Article	IF	CITATIONS
55	High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air. Atmospheric Measurement Techniques, 2013, 6, 837-860.	1.2	151
56	Towards better error statistics for atmospheric inversions of methane surface fluxes. Atmospheric Chemistry and Physics, 2013, 13, 7115-7132.	1.9	37
57	Reassessing the variability in atmospheric H ₂ using the twoâ€way nested TM5 model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 3764-3780.	1.2	26
58	Selective measurements of NO, NO ₂ and NO _y in the free troposphere using quantum cascade laser spectroscopy. Atmospheric Measurement Techniques, 2013, 6, 927-936.	1.2	47
59	Robust extraction of baseline signal of atmospheric trace species using local regression. Atmospheric Measurement Techniques, 2012, 5, 2613-2624.	1.2	116
60	Evaluation of new laser spectrometer techniques for in-situ carbon monoxide measurements. Atmospheric Measurement Techniques, 2012, 5, 2555-2567.	1.2	51
61	Long-term in situ measurements of NO _x and NO _y at Jungfraujoch 1998–2009: time series analysis and evaluation. Atmospheric Chemistry and Physics, 2012, 12, 2551-2566.	1.9	29
62	Long-term changes in lower tropospheric baseline ozone concentrations at northern mid-latitudes. Atmospheric Chemistry and Physics, 2012, 12, 11485-11504.	1.9	260
63	Molecular hydrogen (H ₂) combustion emissions and their isotope (D/H) signatures from domestic heaters, diesel vehicle engines, waste incinerator plants, and biomass burning. Atmospheric Chemistry and Physics, 2012, 12, 6275-6289.	1.9	13
64	Changes in ozone over Europe: Analysis of ozone measurements from sondes, regular aircraft (MOZAIC) and alpine surface sites. Journal of Geophysical Research, 2012, 117, .	3.3	139
65	Free tropospheric ozone changes over Europe as observed at Jungfraujoch (1990–2008): An analysis based on backward trajectories. Journal of Geophysical Research, 2011, 116, .	3.3	56
66	A new estimation of the recent tropospheric molecular hydrogen budget using atmospheric observations and variational inversion. Atmospheric Chemistry and Physics, 2011, 11, 3375-3392.	1.9	29
67	Aerosol climatology and planetary boundary influence at the Jungfraujoch analyzed by synoptic weather types. Atmospheric Chemistry and Physics, 2011, 11, 5931-5944.	1.9	92
68	Continuous isotopic composition measurements of tropospheric CO ₂ at Jungfraujoch (3580 m a.s.l.), Switzerland: real-time observation of regional pollution events. Atmospheric Chemistry and Physics, 2011, 11, 1685-1696.	1.9	72
69	Evaluation of in situ measurements of atmospheric carbon monoxide at Mount Waliguan, China. Atmospheric Chemistry and Physics, 2011, 11, 5195-5206.	1.9	44
70	1997–2007 CO trend at the high Alpine site Jungfraujoch: a comparison between NDIR surface in situ and FTIR remote sensing observations. Atmospheric Chemistry and Physics, 2011, 11, 6735-6748.	1.9	20
71	Inverse modelling of European N ₂ O emissions: assimilating observations from different networks. Atmospheric Chemistry and Physics, 2011, 11, 2381-2398.	1.9	63
72	Ozone, carbon monoxide and nitrogen oxides time series at four alpine GAW mountain stations in central Europe. Atmospheric Chemistry and Physics, 2010, 10, 12295-12316.	1.9	98

#	Article	IF	CITATIONS
73	Single particle characterization of black carbon aerosols at a tropospheric alpine site in Switzerland. Atmospheric Chemistry and Physics, 2010, 10, 7389-7407.	1.9	109
74	Molecular hydrogen (H2) emissions from gasoline and diesel vehicles. Science of the Total Environment, 2010, 408, 3596-3606.	3.9	17
7 5	An evaluation of the current radiative forcing benefit of the Montreal Protocol at the high-Alpine site Jungfraujoch. Science of the Total Environment, 2008, 391, 217-223.	3.9	8
76	Observations of long-lived anthropogenic halocarbons at the high-Alpine site of Jungfraujoch (Switzerland) for assessment of trends and European sources. Science of the Total Environment, 2008, 391, 224-231.	3.9	56
77	Measurements of organic trace gases including oxygenated volatile organic compounds at the high alpine site Jungfraujoch (Switzerland): Seasonal variation and source allocations. Journal of Geophysical Research, 2008, 113, .	3.3	28
78	Groundâ€level nitrogen dioxide concentrations inferred from the satelliteâ€borne Ozone Monitoring Instrument. Journal of Geophysical Research, 2008, 113, .	3.3	288
79	Estimation of background concentrations of trace gases at the Swiss Alpine site Jungfraujoch (3580 m) Tj ETQq1	1 0.78431 3.3	4 rgBT /0ve
80	â€~Measurements of OVOCs and NMHCs in a Swiss Highway Tunnel for Estimation of Road Transport Emissions. Environmental Science & Emissions. Environmental E	4.6	55
81	Nitrogen oxide measurements at rural sites in Switzerland: Bias of conventional measurement techniques. Journal of Geophysical Research, 2007, 112, .	3.3	220
82	Road vehicle emissions of molecular hydrogen (H2) from a tunnel study. Atmospheric Environment, 2007, 41, 8355-8369.	1.9	46
83	Comparison of 7 years of satellite-borne and ground-based tropospheric NO2measurements around Milan, Italy. Journal of Geophysical Research, 2006, 111, .	3.3	62
84	Volatile Organic Compounds in the Po Basin. Part A: Anthropogenic VOCs. Journal of Atmospheric Chemistry, 2005, 51, 271-291.	1.4	31
85	Volatile Organic Compounds in the Po Basin. Part B: Biogenic VOCs. Journal of Atmospheric Chemistry, 2005, 51, 293-315.	1.4	26
86	Secondary organic aerosols from anthropogenic and biogenic precursors. Faraday Discussions, 2005, 130, 265.	1.6	245
87	Secondary Organic Aerosol Formation by Irradiation of 1,3,5-Trimethylbenzeneâ°'NOxâ°'H2O in a New Reaction Chamber for Atmospheric Chemistry and Physics. Environmental Science & Environmental Scienc	4.6	191
88	Nocturnal trans-alpine transport of ozone and its effects on air quality on the Swiss Plateau. Atmospheric Environment, 2004, 38, 4539-4550.	1.9	15
89	Vertical transport and degradation of polycyclic aromatic hydrocarbons in an Alpine Valley. Atmospheric Environment, 2004, 38, 6447-6456.	1.9	24

MARTIN STEINBACHER

#	Article	IF	CITATIONS
91	Performance characteristics of a proton-transfer-reaction mass spectrometer (PTR-MS) derived from laboratory and field measurements. International Journal of Mass Spectrometry, 2004, 239, 117-128.	0.7	96
92	Application of PTR-MS for measurements of biogenic VOC in a deciduous forest. International Journal of Mass Spectrometry, 2004, 239, 87-101.	0.7	68
93	The Global Atmosphere Watch reactive gases measurement network. Elementa, 0, 3, .	1.1	63