
Laurence Moreau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5839034/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic Architecture of Flowering Time in Maize As Inferred From Quantitative Trait Loci Meta-analysis and Synteny Conservation With the Rice Genome. Genetics, 2004, 168, 2169-2185.	1.2	353
2	Maximizing the Reliability of Genomic Selection by Optimizing the Calibration Set of Reference Individuals: Comparison of Methods in Two Diverse Groups of Maize Inbreds (<i>Zea mays</i> L.). Genetics, 2012, 192, 715-728.	1.2	258
3	Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theoretical and Applied Genetics, 2006, 113, 206-224.	1.8	229
4	The Genetic Basis of Heterosis: Multiparental Quantitative Trait Loci Mapping Reveals Contrasted Levels of Apparent Overdominance Among Traits of Agronomical Interest in Maize (<i>Zea mays</i> L.). Genetics, 2012, 190, 795-811.	1.2	146
5	Usefulness of Multiparental Populations of Maize (<i>Zea mays</i> L.) for Genome-Based Prediction. Genetics, 2014, 198, 3-16.	1.2	114
6	Genetic Analysis and QTL Mapping of Cell Wall Digestibility and Lignification in Silage Maize. Crop Science, 2001, 41, 690-697.	0.8	97
7	Linkage Disequilibrium with Linkage Analysis of Multiline Crosses Reveals Different Multiallelic QTL for Hybrid Performance in the Flint and Dent Heterotic Groups of Maize. Genetics, 2014, 198, 1717-1734.	1.2	89
8	Recovering Power in Association Mapping Panels with Variable Levels of Linkage Disequilibrium. Genetics, 2014, 197, 375-387.	1.2	89
9	Economic Efficiency of One Cycle of Markerâ€Assisted Selection. Crop Science, 2000, 40, 329-337.	0.8	85
10	Meta-analysis of QTL involved in silage quality of maize and comparison with the position of candidate genes. Theoretical and Applied Genetics, 2010, 121, 1465-1482.	1.8	83
11	Use of trial clustering to study QTL�×environment effects for grain yield and related traits in maize. Theoretical and Applied Genetics, 2004, 110, 92-105.	1.8	61
12	Fine Mapping and Haplotype Structure Analysis of a Major Flowering Time Quantitative Trait Locus on Maize Chromosome 10. Genetics, 2009, 183, 1555-1563.	1.2	60
13	Reciprocal Genetics: Identifying QTL for General and Specific Combining Abilities in Hybrids Between Multiparental Populations from Two Maize (<i>Zea mays</i> L.) Heterotic Groups. Genetics, 2017, 207, 1167-1180.	1.2	53
14	Predicting genomic selection efficiency to optimize calibration set and to assess prediction accuracy in highly structured populations. Theoretical and Applied Genetics, 2017, 130, 2231-2247.	1.8	49
15	Genetic basis of phenotypic plasticity and genotype × environment interactions in a multi-parental tomato population. Journal of Experimental Botany, 2020, 71, 5365-5376.	2.4	49
16	Usefulness Criterion and Post-selection Parental Contributions in Multi-parental Crosses: Application to Polygenic Trait Introgression. G3: Genes, Genomes, Genetics, 2019, 9, 1469-1479.	0.8	45
17	Disentangling group specific QTL allele effects from genetic background epistasis using admixed individuals in GWAS: An application to maize flowering. PLoS Genetics, 2020, 16, e1008241.	1.5	44
18	Detection of marker–QTL associations by studying change in marker frequencies with selection. Theoretical and Applied Genetics, 2007, 114, 669-681.	1.8	43

LAURENCE MOREAU

#	Article	IF	CITATIONS
19	General and specific combining abilities in a maize (Zea mays L.) test-cross hybrid panel: relative importance of population structure and genetic divergence between parents. Theoretical and Applied Genetics, 2017, 130, 403-417.	1.8	43
20	Genomic selection efficiency and a priori estimation of accuracy in a structured dent maize panel. Theoretical and Applied Genetics, 2019, 132, 81-96.	1.8	42
21	Dent and Flint maize diversity panels reveal important genetic potential for increasing biomass production. Theoretical and Applied Genetics, 2014, 127, 2313-2331.	1.8	41
22	Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize (Zea mays L.) line crosses highlights complementarities between models based on parental haplotype and single locus polymorphism. Theoretical and Applied Genetics, 2013, 126, 2717-2736.	1.8	40
23	Improving Short- and Long-Term Genetic Gain by Accounting for Within-Family Variance in Optimal Cross-Selection. Frontiers in Genetics, 2019, 10, 1006.	1.1	40
24	Genotyping-by-sequencing highlights original diversity patterns within a European collection of 1191 maize flint lines, as compared to the maize USDA genebank. Theoretical and Applied Genetics, 2017, 130, 2165-2189.	1.8	39
25	Number and Fitness of Selected Individuals in Marker-Assisted and Phenotypic Recurrent Selection. Crop Science, 2006, 46, 1972-1980.	0.8	38
26	Optimized breeding strategies to harness genetic resources with different performance levels. BMC Genomics, 2020, 21, 349.	1.2	38
27	A method to optimize selection on multiple identified quantitative trait loci. Genetics Selection Evolution, 2002, 34, 145-70.	1.2	30
28	Training set optimization of genomic prediction by means of EthAcc. PLoS ONE, 2019, 14, e0205629.	1.1	29
29	Assessment of breeding programs sustainability: application of phenotypic and genomic indicators to a North European grain maize program. Theoretical and Applied Genetics, 2019, 132, 1321-1334.	1.8	26
30	Marker-assisted selection efficiency in multiple connected populations: a simulation study based on the results of a QTL detection experiment in maize. Euphytica, 2008, 161, 71-84.	0.6	24
31	Genomic prediction with a maize collaborative panel: identification of genetic resources to enrich elite breeding programs. Theoretical and Applied Genetics, 2020, 133, 201-215.	1.8	23
32	Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude. PLoS Genetics, 2019, 15, e1008512.	1.5	22
33	Revisiting hybrid breeding designs using genomic predictions: simulations highlight the superiority of incomplete factorials between segregating families over topcross designs. Theoretical and Applied Genetics, 2020, 133, 1995-2010.	1.8	20
34	Genomic prediction of hybrid crops allows disentangling dominance and epistasis. Genetics, 2021, 218, .	1.2	20
35	Clusthaplo: a plug-in for MCQTL to enhance QTL detection using ancestral alleles in multi-cross design. Theoretical and Applied Genetics, 2014, 127, 921-933.	1.8	19
36	Accounting for Group-Specific Allele Effects and Admixture in Genomic Predictions: Theory and Experimental Evaluation in Maize. Genetics, 2020, 216, 27-41.	1.2	15

#	Article	IF	CITATIONS
37	Diversity and linkage disequilibrium features in a composite public/private dent maize panel: consequences for association genetics as evaluated from a case study using flowering time. Theoretical and Applied Genetics, 2012, 125, 731-747.	1.8	13
38	Quantitative trait loci mapping in hybrids between Dent and Flint maize multiparental populations reveals group-specific QTL for silage quality traits with variable pleiotropic effects on yield. Theoretical and Applied Genetics, 2019, 132, 1523-1542.	1.8	12
39	Deciphering the Genetic Architecture of Plant Virus Resistance by GWAS, State of the Art and Potential Advances. Cells, 2021, 10, 3080.	1.8	12
40	Linkage Analysis and Association Mapping QTL Detection Models for Hybrids Between Multiparental Populations from Two Heterotic Groups: Application to Biomass Production in Maize (<i>Zea mays</i>) Tj ETQqO	0@&gBT /	Overlock 10
41	Quantitative trait loci involved in the reproductive success of a parasitoid wasp. Molecular Ecology, 2020, 29, 3476-3493.	2.0	9

42	X-chromosome meiotic drive in Drosophila simulans: a QTL approach reveals the complex polygenic determinism of Paris drive suppression. Heredity, 2019, 122, 906-915.	1.2	8
43	Building a Calibration Set for Genomic Prediction, Characteristics to Be Considered, and Optimization Approaches. Methods in Molecular Biology, 2022, 2467, 77-112.	0.4	8
44	Improving genomic predictions with inbreeding and nonadditive effects in two admixed maize hybrid populations in single and multienvironment contexts. Genetics, 2022, 220, .	1.2	5