Stephanie L Wunder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5838247/publications.pdf

Version: 2024-02-01

39 papers 1,375 citations

394421 19 h-index 36 g-index

40 all docs

40 docs citations

40 times ranked

2100 citing authors

#	Article	IF	CITATIONS
1	Novel Microporous Poly(vinylidene fluoride) Blend Electrolytes for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2000, 147, 2853.	2.9	147
2	Filler-coupling agent-matrix interactions in silica/polymethylmethacrylate composites. Journal of Biomedical Materials Research Part B, 2001, 57, 384-393.	3.1	113
3	Oligomeric Poly(ethylene oxide)-Functionalized Silsesquioxanes:  Interfacial Effects on Tg, Tm, and ΔHm. Chemistry of Materials, 2002, 14, 4494-4497.	6.7	85
4	Polyoctahedral Silsesquioxane-Nanoparticle Electrolytes for Lithium Batteries: POSS-Lithium Salts and POSS-PEGs. Chemistry of Materials, 2011, 23, 5111-5121.	6.7	82
5	Blends of POSSâ^PEO(n=4)8 and High Molecular Weight Poly(ethylene oxide) as Solid Polymer Electrolytes for Lithium Batteries. Journal of Physical Chemistry B, 2007, 111, 3583-3590.	2.6	76
6	Engineered Interfaces in Hybrid Ceramic–Polymer Electrolytes for Use in All-Solid-State Li Batteries. ACS Energy Letters, 2017, 2, 134-138.	17.4	75
7	High Conductivity, High Strength Solid Electrolytes Formed by in Situ Encapsulation of Ionic Liquids in Nanofibrillar Methyl Cellulose Networks. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13426-13436.	8.0	67
8	Effects of Silanol Density, Distribution, and Hydration State of Fumed Silica on the Formation of Self-Assembled Monolayers ofn-Octadecyltrichlorosilane. Langmuir, 2000, 16, 5008-5016.	3 . 5	60
9	A Metal–Organic Framework Thin Film for Selective Mg ²⁺ Transport. Angewandte Chemie - International Edition, 2019, 58, 15313-15317.	13.8	56
10	Highly Durable, Self-Standing Solid-State Supercapacitor Based on an Ionic Liquid-Rich Ionogel and Porous Carbon Nanofiber Electrodes. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33749-33757.	8.0	55
11	Self-assembled Janus-like multi-ionic lithium salts form nano-structured solid polymer electrolytes with high ionic conductivity and Li ⁺ ion transference number. Journal of Materials Chemistry A, 2013, 1, 1731-1739.	10.3	54
12	Chemical surface treatment of ultrahigh molecular weight polyethylene for improved adhesion to methacrylate resins. Journal of Applied Polymer Science, 2005, 96, 1564-1572.	2.6	51
13	Effect of lamellarity and size on calorimetric phase transitions in single component phosphatidylcholine vesicles. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 532-543.	2.6	49
14	Poly(ethylene oxide) Silananted Nanosize Fumed Silica:Â DSC and TGA Characterization of the Surface. Langmuir, 2003, 19, 8994-9004.	3 . 5	41
15	Molecular flexibility of polymethylene molecules: A Raman spectroscopic study. Journal of Chemical Physics, 1988, 89, 166-173.	3.0	33
16	Confinement Effects of Silica Nanoparticles with Radii Smaller and Larger than <i>R</i> _g of Adsorbed Poly(ethylene oxide). Macromolecules, 2011, 44, 2873-2882.	4.8	33
17	Hydration repulsion effects on the formation of supported lipid bilayers. Soft Matter, 2011, 7, 1936.	2.7	27
18	Characterization of the interaction of poly(ethylene oxide) with nanosize fumed silica: Surface effects on crystallization. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 1978-1993.	2.1	26

#	Article	IF	Citations
19	An alternative route to single ion conductivity using multi-ionic salts. Materials Horizons, 2018, 5, 461-473.	12.2	24
20	Gel Electrolyte Comprising Solvate Ionic Liquid and Methyl Cellulose. ACS Applied Energy Materials, 2020, 3, 279-289.	5.1	22
21	A Selfâ€Binding, Meltâ€Castable, Crystalline Organic Electrolyte for Sodium Ion Conduction. Angewandte Chemie - International Edition, 2016, 55, 15254-15257.	13.8	21
22	Thermal Stability of Octadecylsilane Monolayers on Silica:Â Curvature and Free Volume Effects. Journal of Physical Chemistry B, 2001, 105, 173-181.	2.6	19
23	Bulk-Phase Ion Conduction in Cocrystalline LiCl· <i>N</i> , <i>N</i> -Dimethylformamide: A New Paradigm for Solid Electrolytes Based upon the Pearson Hard–Soft Acid–Base Concept. Chemistry of Materials, 2015, 27, 5479-5482.	6.7	19
24	Weibull models of fracture strengths and fatigue behavior of dental resins in flexure and shear., 1998, 43, 226-233.		17
25	Multi-ionic lithium salts increase lithium ion transference numbers in ionic liquid gel separators. Journal of Materials Chemistry A, 2016, 4, 14380-14391.	10.3	15
26	Mechanism of supported bilayer formation of zwitterionic lipids on SiO2 nanoparticles and structure of the stable colloids. RSC Advances, 2012, 2, 11336.	3.6	14
27	High-Density Recombinant Adeno-Associated Viral Particles are Competent Vectors for <i>In Vivo </i> Iransduction. Human Gene Therapy, 2016, 27, 971-981.	2.7	14
28	Submicron-size particles of ultrahigh molecular weight polyethylene produced via nonsolvent and temperature-induced crystallization., 2000, 53, 152-160.		12
29	Lamellar, micro-phase separated blends of methyl cellulose and dendritic polyethylene glycol, POSS-PEG. Carbohydrate Polymers, 2016, 136, 19-29.	10.2	12
30	Surface stress of polydimethylsiloxane networks. Journal of Polymer Science, Part B: Polymer Physics, 1997, 35, 2391-2396.	2.1	9
31	Experimental and Theoretical Investigation of the Ion Conduction Mechanism of Tris(adiponitrile)perchloratosodium, a Self-Binding, Melt-Castable Crystalline Sodium Electrolyte. Chemistry of Materials, 2019, 31, 8850-8863.	6.7	9
32	The polyoctahedral silsesquioxane (POSS) 1,3,5,7,9,11,13,15-octaphenylpentacyclo[9.5.1.1 ^{3,9} .1 ^{5,15} .1 ^{7,13}]octasil (octaphenyl-POSS). Acta Crystallographica Section C, Structural Chemistry, 2014, 70, 971-974.	ox o ree	8
33	A Selfâ€Binding, Meltâ€Castable, Crystalline Organic Electrolyte for Sodium Ion Conduction. Angewandte Chemie, 2016, 128, 15480-15483.	2.0	6
34	Unravelling the structural and dynamical complexity of the equilibrium liquid grain-binding layer in highly conductive organic crystalline electrolytes. Journal of Materials Chemistry A, 2018, 6, 4394-4404.	10.3	6
35	NMR and FTIR investigation of the solution imidization kinetics of model compounds of PMDA/ODA polyamic ethyl ester. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 435-448.	2.1	5
36	Crystal structure and ionic conductivity of the soft solid crystal: isoquinoline3•(LiCl)2. Ionics, 2018, 24, 343-349.	2.4	5

#	Article	IF	CITATIONS
37	Solvate sponge crystals of (DMF) < sub > 3 < / sub > NaClO < sub > 4 < / sub > : reversible pressure/temperature controlled juicing in a melt/press-castable sodium-ion conductor. Chemical Science, 2021, 12, 5574-5581.	7.4	3
38	Mechanism of Ion Conduction and Dynamics in Tris(<i>N</i> N, <i>N</i> -dimethylformamide) Perchloratosodium Solid Electrolytes. Journal of Physical Chemistry C, 2022, 126, 4744-4750.	3.1	3
39	Surface Modification of Silica with Ultrahighmolecular Weight Polyethylene (UHMWPE). Materials Research Society Symposia Proceedings, 2002, 750, 1.	0.1	O