List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5837973/publications.pdf Version: 2024-02-01

		34105	51608
213	9,413	52	86
papers	citations	h-index	g-index
234	234	234	8953
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genome-wide analysis of copy number variants and normal facial variation in a large cohort of Bantu Africans. Human Genetics and Genomics Advances, 2022, 3, 100082.	1.7	1
2	Morphological correspondence between brain and endocranial surfaces in mice exposed to undernutrition during development. Journal of Anatomy, 2022, , .	1.5	0
3	A Deep Invertible 3-D Facial Shape Model for Interpretable Genetic Syndrome Diagnosis. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 3229-3239.	6.3	6
4	Multi-Scale Part-Based Syndrome Classification of 3D Facial Images. IEEE Access, 2022, 10, 23450-23462.	4.2	3
5	The genetic basis of neurocranial size and shape across varied lab mouse populations. Journal of Anatomy, 2022, 241, 211-229.	1.5	2
6	Sex Differences in Adult Facial Three-Dimensional Morphology: Application to Gender-Affirming Facial Surgery. Facial Plastic Surgery and Aesthetic Medicine, 2022, 24, S-24-S-30.	0.9	19
7	Downstream Branches of the Fibroblast Growth Factor Signaling Pathway Act Interdependently to Shape the Face. FASEB Journal, 2022, 36, .	0.5	0
8	<i>Fgf8</i> dosage regulates jaw shape and symmetry through pharyngeal ardiac tissue relationships. Developmental Dynamics, 2022, 251, 1711-1727.	1.8	6
9	MusMorph, a database of standardized mouse morphology data for morphometric meta-analyses. Scientific Data, 2022, 9, .	5.3	3
10	<i>HDAC9</i> structural variants disrupting <i>TWIST1</i> transcriptional regulation lead to craniofacial and limb malformations. Genome Research, 2022, 32, 1242-1253.	5.5	5
11	Wnt Signaling Drives Correlated Changes in Facial Morphology and Brain Shape. Frontiers in Cell and Developmental Biology, 2021, 9, 644099.	3.7	9
12	A landmark-free morphometrics pipeline for high-resolution phenotyping: application to a mouse model of Down syndrome. Development (Cambridge), 2021, 148, .	2.5	26
13	The Chromatin Regulator Ankrd11 Controls Palate and Cranial Bone Development. Frontiers in Cell and Developmental Biology, 2021, 9, 645386.	3.7	16
14	Selection for increased tibia length in mice alters skull shape through parallel changes in developmental mechanisms. ELife, 2021, 10, .	6.0	10
15	Extracellular Matrix Composition Is Altered Alongside Dysmorphology in the Developing Palate. FASEB Journal, 2021, 35, .	0.5	0
16	Mapping the Multiâ€Modal Distribution of Craniofacial Phenotypes in NOSIP Mutants. FASEB Journal, 2021, 35, .	0.5	0
17	Integration of Cellular Dynamics and Morphology to Understand Mouse Facial Development. FASEB Journal, 2021, 35, .	0.5	0
18	Genome-wide copy number variations in a large cohort of bantu African children. BMC Medical Genomics, 2021, 14, 129.	1.5	6

#	Article	IF	CITATIONS
19	Large-scale open-source three-dimensional growth curves for clinical facial assessment and objective description of facial dysmorphism. Scientific Reports, 2021, 11, 12175.	3.3	17
20	Body mass estimation from footprint size in hominins. Journal of Human Evolution, 2021, 156, 102997.	2.6	8
21	Genome scans of facial features in East Africans and cross-population comparisons reveal novel associations. PLoS Genetics, 2021, 17, e1009695.	3.5	13
22	Relating multivariate shapes to genescapes using phenotype-biological process associations for craniofacial shape. ELife, 2021, 10, .	6.0	7
23	FaceBase 3: analytical tools and FAIR resources for craniofacial and dental research. Development (Cambridge), 2020, 147, .	2.5	25
24	Lack of head sparing following third-trimester caloric restriction among Tanzanian Maasai. PLoS ONE, 2020, 15, e0237700.	2.5	8
25	Automated syndrome diagnosis by three-dimensional facial imaging. Genetics in Medicine, 2020, 22, 1682-1693.	2.4	47
26	Facial shape and allometry quantitative trait locus intervals in the Diversity Outbred mouse are enriched for known skeletal and facial development genes. PLoS ONE, 2020, 15, e0233377.	2.5	19
27	Fully Automatic Landmarking of Syndromic 3D Facial Surface Scans Using 2D Images. Sensors, 2020, 20, 3171.	3.8	19
28	VBM sensitivity to localization and extent of mouse brain lesions: A simulation approach. Computer Methods and Programs in Biomedicine, 2020, 196, 105636.	4.7	3
29	A Registration and Deep Learning Approach to Automated Landmark Detection for Geometric Morphometrics. Evolutionary Biology, 2020, 47, 246-259.	1.1	31
30	Complex patterns of cell growth in the placenta in normal pregnancy and as adaptations to maternal diet restriction. PLoS ONE, 2020, 15, e0226735.	2.5	25
31	Mapping the relationship between proliferation and morphology in the developing mouse face. FASEB Journal, 2020, 34, 1-1.	0.5	0
32	Mapping the Multiâ€Modal Distribution of Craniofacial Phenotypes in NOSIP Mutants. FASEB Journal, 2020, 34, 1-1.	0.5	0
33	Determining the Role of Extracellular Matrix Compliance on Facial Morphogenesis. FASEB Journal, 2020, 34, 1-1.	0.5	0
34	Lack of head sparing following third-trimester caloric restriction among Tanzanian Maasai. , 2020, 15, e0237700.		0
35	Lack of head sparing following third-trimester caloric restriction among Tanzanian Maasai. , 2020, 15, e0237700.		0
36	Lack of head sparing following third-trimester caloric restriction among Tanzanian Maasai. , 2020, 15, e0237700.		0

3

#	Article	IF	CITATIONS
37	Lack of head sparing following third-trimester caloric restriction among Tanzanian Maasai. , 2020, 15, e0237700.		0
38	Lack of head sparing following third-trimester caloric restriction among Tanzanian Maasai. , 2020, 15, e0237700.		0
39	Lack of head sparing following third-trimester caloric restriction among Tanzanian Maasai. , 2020, 15, e0237700.		0
40	Lack of head sparing following third-trimester caloric restriction among Tanzanian Maasai. , 2020, 15, e0237700.		0
41	The developmental-genetics of canalization. Seminars in Cell and Developmental Biology, 2019, 88, 67-79.	5.0	63
42	Region-specific changes in Mus musculus brain size and cell composition under chronic nutrient restriction. Journal of Experimental Biology, 2019, 222, .	1.7	5
43	Nonlinear gene expressionâ€phenotype relationships contribute to variation and clefting in the A/WySn mouse. Developmental Dynamics, 2019, 248, 1232-1242.	1.8	18
44	Integration and the Developmental Genetics of Allometry. Integrative and Comparative Biology, 2019, 59, 1369-1381.	2.0	42
45	Hybridization in human evolution: Insights from other organisms. Evolutionary Anthropology, 2019, 28, 189-209.	3.4	57
46	The effect of automated landmark identification on morphometric analyses. Journal of Anatomy, 2019, 234, 917-935.	1.5	26
47	Emergent Properties of Facial Morphogenesis Regulated by Fgf Signaling. FASEB Journal, 2019, 33, 774.18.	O.5	0
48	Integration and the genetics of variation in facial shape. FASEB Journal, 2019, 33, 330.2.	0.5	0
49	Modeling the Development of Cleft Lip and Palate in Variable Clefting Mouse Strains. FASEB Journal, 2019, 33, .	0.5	0
50	Bone Morphogenetic Protein 2 Coordinates Early Tooth Mineralization. Journal of Dental Research, 2018, 97, 835-843.	5.2	35
51	Brain Structural Networks in Mouse Exposed to Chronic Maternal Undernutrition. Neuroscience, 2018, 380, 14-26.	2.3	11
52	Craniomandibular form and body size variation of first generation mouse hybrids: A model for hominin hybridization. Journal of Human Evolution, 2018, 116, 57-74.	2.6	15
53	Body size and allometric variation in facial shape in children. American Journal of Physical Anthropology, 2018, 165, 327-342.	2.1	23
54	Facial shape manifestations of growth faltering in Tanzanian children. Journal of Anatomy, 2018, 232, 250-262.	1.5	4

#	Article	IF	CITATIONS
55	Developmental constraint through negative pleiotropy in the zygomatic arch. EvoDevo, 2018, 9, 3.	3.2	6
56	Understanding the development of variable craniofacial phenotypes caused by altered methylation affecting Wnt9b in Aâ€strain mice. FASEB Journal, 2018, 32, 776.14.	0.5	0
57	Untangling Sources of Phenotypic Variation Characterizing the Craniofacial Disease Holoprosencephaly. FASEB Journal, 2018, 32, 776.11.	0.5	0
58	Human Facial Shape and Size Heritability and Genetic Correlations. Genetics, 2017, 205, 967-978.	2.9	70
59	Quantifying threeâ€dimensional morphology and RNA from individual embryos. Developmental Dynamics, 2017, 246, 431-436.	1.8	7
60	Rapid automated landmarking for morphometric analysis of threeâ€dimensional facial scans. Journal of Anatomy, 2017, 230, 607-618.	1.5	31
61	Craniofacial diversification in the domestic pigeon and the evolution of the avian skull. Nature Ecology and Evolution, 2017, 1, 95.	7.8	29
62	The Interaction of Genetic Background and Mutational Effects in Regulation of Mouse Craniofacial Shape. G3: Genes, Genomes, Genetics, 2017, 7, 1439-1450.	1.8	22
63	Shape Variation in the Dermatocranium of the Greater Short-Horned Lizard Phrynosoma hernandesi (Reptilia: Squamata: Phrynosomatidae). Evolutionary Biology, 2017, 44, 240-260.	1.1	6
64	Developmental nonlinearity drives phenotypic robustness. Nature Communications, 2017, 8, 1970.	12.8	81
65	Angiotensin receptor blockade mediated amelioration of mucopolysaccharidosis type I cardiac and craniofacial pathology. Journal of Inherited Metabolic Disease, 2017, 40, 281-289.	3.6	12
66	Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human Facial Morphology. PLoS Genetics, 2016, 12, e1006149.	3.5	140
67	Genomewide Association Study of African Children Identifies Association of SCHIP1 and PDE8A with Facial Size and Shape. PLoS Genetics, 2016, 12, e1006174.	3.5	81
68	Genetic structure of phenotypic robustness in the collaborative cross mouse diallel panel. Journal of Evolutionary Biology, 2016, 29, 1737-1751.	1.7	19
69	Development Shapes a Consistent Inbreeding Effect in Mouse Crania of Different Line Crosses. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2016, 326, 474-488.	1.3	11
70	Genetics of murine craniofacial morphology: diallel analysis of the eight founders of the Collaborative Cross. Journal of Anatomy, 2016, 228, 96-112.	1.5	29
71	Facial surface morphology predicts variation inÂinternal skeletal shape. American Journal of Orthodontics and Dentofacial Orthopedics, 2016, 149, 501-508.	1.7	28
72	Beyond cell proliferation in avian facial morphogenesis. Developmental Dynamics, 2016, 245, 190-196.	1.8	3

#	Article	IF	CITATIONS
73	Conditional Creation and Rescue of Nipbl-Deficiency in Mice Reveals Multiple Determinants of Risk for Congenital Heart Defects. PLoS Biology, 2016, 14, e2000197.	5.6	28
74	Chronic Protein Restriction in Mice Impacts Placental Function and Maternal Body Weight before Fetal Growth. PLoS ONE, 2016, 11, e0152227.	2.5	52
75	Prenatal development of skull and brain in a mouse model of growth restriction. Revista Argentina De Antropologia Biologica, 2016, 18, .	0.4	4
76	<i>Tfap2a</i> -dependent changes in facial morphology result in clefting that can be ameliorated by a reduction in <i>Fgf8</i> gene dosage. DMM Disease Models and Mechanisms, 2015, 8, 31-43.	2.4	40
77	Impact of retinoic acid exposure on midfacial shape variation and manifestation of holoprosencephaly in <i>Twisted gastrulation</i> mutant mice. DMM Disease Models and Mechanisms, 2015, 8, 139-46.	2.4	19
78	Facial Morphogenesis. Current Topics in Developmental Biology, 2015, 115, 299-320.	2.2	83
79	Morphometrics, 3D Imaging, and Craniofacial Development. Current Topics in Developmental Biology, 2015, 115, 561-597.	2.2	61
80	Signals from the brain induce variation in avian facial shape. Developmental Dynamics, 2015, 244, 1133-1143.	1.8	52
81	Mind the Gap: Genetic Manipulation of Basicranial Growth within Synchondroses Modulates Calvarial and Facial Shape in Mice through Epigenetic Interactions. PLoS ONE, 2015, 10, e0118355.	2.5	45
82	Correlations Between the Morphology of Sonic Hedgehog Expression Domains and Embryonic Craniofacial Shape. Evolutionary Biology, 2015, 42, 379-386.	1.1	22
83	A dynamic <i>Shh</i> expression pattern, regulated by SHH and BMP signaling, coordinates fusion of primordia in the amniote face. Development (Cambridge), 2015, 142, 567-574.	2.5	59
84	Divergence of craniofacial developmental trajectories among avian embryos. Developmental Dynamics, 2015, 244, 1158-1167.	1.8	33
85	Inbred Background Effects On Craniofacial Shape Dysmorphology In Mice With Spry Deletions. FASEB Journal, 2015, 29, 697.2.	0.5	0
86	Shapeâ€shift: Semicircular canal morphology responds to selective breeding for increased locomotor activity. Evolution; International Journal of Organic Evolution, 2014, 68, 3184-3198.	2.3	26
87	Let's Face It—Complex Traits Are Just Not That Simple. PLoS Genetics, 2014, 10, e1004724.	3.5	68
88	Bone quality in prehistoric, cisâ€baikal forager femora: A micro T analysis of cortical canal microstructure. American Journal of Physical Anthropology, 2014, 154, 486-497.	2.1	5
89	Surface landmark quantification of embryonic mouse craniofacial morphogenesis. BMC Developmental Biology, 2014, 14, 31.	2.1	19
90	Impacts of genetic correlation on the independent evolution of body mass and skeletal size in mammals. BMC Evolutionary Biology, 2014, 14, 258.	3.2	36

#	Article	IF	CITATIONS
91	Stem Cell–Derived Endochondral Cartilage Stimulates Bone Healing by Tissue Transformation. Journal of Bone and Mineral Research, 2014, 29, 1269-1282.	2.8	159
92	Craniofacial morphometric analysis of individuals with Xâ€linked hypohidrotic ectodermal dysplasia. Molecular Genetics & Genomic Medicine, 2014, 2, 422-429.	1.2	19
93	Association between integration structure and functional evolution in the opercular four-bar apparatus of the threespine stickleback,Gasterosteus aculeatus(Pisces: Gasterosteidae). Biological Journal of the Linnean Society, 2014, 111, 375-390.	1.6	18
94	Facial morphometrics of children with non-syndromic orofacial clefts in Tanzania. BMC Oral Health, 2014, 14, 93.	2.3	17
95	Canalization and developmental instability of the fetal skull in a mouse model of maternal nutritional stress. American Journal of Physical Anthropology, 2014, 154, 544-553.	2.1	29
96	Embryonic bauplans and the developmental origins of facial diversity and constraint. Development (Cambridge), 2014, 141, 1059-1063.	2.5	112
97	Endochondral bone tissue engineering: using cartilage to drive vascularized bone regeneration (87.6). FASEB Journal, 2014, 28, 87.6.	0.5	0
98	The LINDSAY Virtual Human Project: An immersive approach to anatomy and physiology. Anatomical Sciences Education, 2013, 6, 19-28.	3.7	38
99	Effects of growth hormone on the ontogenetic allometry of craniofacial bones. Evolution & Development, 2013, 15, 133-145.	2.0	44
100	Quantification of shape and cell polarity reveals a novel mechanism underlying malformations resulting from related FGF mutations during facial morphogenesis. Human Molecular Genetics, 2013, 22, 5160-5172.	2.9	30
101	Fine Tuning of Craniofacial Morphology by Distant-Acting Enhancers. Science, 2013, 342, 1241006.	12.6	209
102	The effect of hypoxia on facial shape variation and disease phenotypes in chicken embryos. DMM Disease Models and Mechanisms, 2013, 6, 915-24.	2.4	21
103	Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice. Genome Biology and Evolution, 2013, 5, 1926-1936.	2.5	16
104	Embryonic origins of novelty and constraint in the amniote upper jaw. FASEB Journal, 2013, 27, 319.3.	0.5	0
105	Microarchitecture, but Not Bone Mechanical Properties, Is Rescued with Growth Hormone Treatment in a Mouse Model of Growth Hormone Deficiency. International Journal of Endocrinology, 2012, 2012, 1-10.	1.5	12
106	The Genome Architecture of the Collaborative Cross Mouse Genetic Reference Population. Genetics, 2012, 190, 389-401.	2.9	435
107	Heterotopic mineralization (ossification or calcification) in tendinopathy or following surgical tendon trauma. International Journal of Experimental Pathology, 2012, 93, 319-331.	1.3	92
108	Genetics and evolution of function-valued traits: understanding environmentally responsive phenotypes. Trends in Ecology and Evolution, 2012, 27, 637-647.	8.7	176

#	Article	IF	CITATIONS
109	The Developmental Basis of Quantitative Craniofacial Variation in Humans and Mice. Evolutionary Biology, 2012, 39, 554-567.	1.1	41
110	The Generation of Variation and the Developmental Basis for Evolutionary Novelty. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2012, 318, 501-517.	1.3	93
111	Signaling by SHH rescues facial defects following blockade in the brain. Developmental Dynamics, 2012, 241, 247-256.	1.8	43
112	Fragile Spines on Cayo Santiago: Bone Mineral Density, Trabecular Morphology, and the Potential for Exploring the Genetics of Osteoporosis in Rhesus Monkeys. , 2012, , 85-116.		3
113	Swarm-Based Computational Development. Understanding Complex Systems, 2012, , 473-499.	0.6	1
114	The Phenogenomics of Craniofacial Shape. FASEB Journal, 2012, 26, 337.4.	0.5	1
115	Changes in semicircular canal morphology in response to selective breeding for high voluntary wheel running. FASEB Journal, 2012, 26, 729.1.	0.5	0
116	A Novel Gene Crispld2 may Contribute to Facial Dysmophology in a Chicken Model of Crouzon's Syndrome. FASEB Journal, 2012, 26, 907.15.	0.5	0
117	Tissue Interactions that Regulate Facial Morphogenesis. FASEB Journal, 2012, 26, 337.2.	0.5	0
118	The FaceBase Consortium: A comprehensive program to facilitate craniofacial research. Developmental Biology, 2011, 355, 175-182.	2.0	72
119	Modularity in the skull and cranial vasculature of laboratory mice: implications for the evolution of complex phenotypes. Evolution & Development, 2011, 13, 28-37.	2.0	35
120	Developmental plasticity in covariance structure of the skull: effects of prenatal stress. Journal of Anatomy, 2011, 218, 243-257.	1.5	31
121	PIONEERING PARADIGMS AND MAGNIFICENT MANIFESTOS-LEIGH VAN VALEN'S PRICELESS CONTRIBUTIONS TO EVOLUTIONARY BIOLOGY. Evolution; International Journal of Organic Evolution, 2011, 65, 917-922.	2.3	2
122	Editorial: What I Learned from Leigh Van Valen. Evolutionary Biology, 2011, 38, 1-2.	1.1	7
123	An assessment of orofacial clefts in Tanzania. BMC Oral Health, 2011, 11, 5.	2.3	36
124	Effects of environmental perturbations during postnatal development on the phenotypic integration of the skull. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 547-561.	1.3	26
125	Epigenetic integration of the developing brain and face. Developmental Dynamics, 2011, 240, 2233-2244.	1.8	63
126	Mechanisms that underlie coâ€variation of the brain and face. Genesis, 2011, 49, 177-189.	1.6	141

#	Article	IF	CITATIONS
127	Craniofacial defect regeneration using engineered bone marrow mesenchymal stromal cells. Journal of Biomedical Materials Research - Part A, 2011, 99A, 74-85.	4.0	22
128	Estimating Cell Count and Distribution in Labeled Histological Samples Using Incremental Cell Search. International Journal of Biomedical Imaging, 2011, 2011, 1-16.	3.9	7
129	Rediscovering Waddington in the postâ€genomic age. BioEssays, 2010, 32, 553-558.	2.5	59
130	Micro-computed tomography-based phenotypic approaches in embryology: procedural artifacts on assessments of embryonic craniofacial growth and development. BMC Developmental Biology, 2010, 10, 18.	2.1	43
131	Building generic anatomical models using virtual model cutting and iterative registration. BMC Medical Imaging, 2010, 10, 5.	2.7	0
132	THE COEVOLUTION OF HUMAN HANDS AND FEET. Evolution; International Journal of Organic Evolution, 2010, 64, 1558-1568.	2.3	103
133	Development and the evolvability of human limbs. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3400-3405.	7.1	217
134	Quantitative analyses link modulation of sonic hedgehog signaling to continuous variation in facial growth and shape. Development (Cambridge), 2010, 137, 3405-3409.	2.5	122
135	Visualization of biological shape transformation by 3D model morphing. , 2010, , .		0
136	Timing of growth hormone treatment affects trabecular bone microarchitecture and mineralization in growth hormone deficient mice. Bone, 2010, 47, 295-300.	2.9	13
137	THE COEVOLUTION OF HUMAN HANDS AND FEET. Evolution; International Journal of Organic Evolution, 2010, 64, 1558-68.	2.3	38
138	The Lysyl Oxidase Inhibitor, β-Aminopropionitrile, Diminishes the Metastatic Colonization Potential of Circulating Breast Cancer Cells. PLoS ONE, 2009, 4, e5620.	2.5	139
139	Osteo-Chondroprogenitor–Specific Deletion of the Selenocysteine tRNA Gene, Trsp, Leads to Chondronecrosis and Abnormal Skeletal Development: A Putative Model for Kashin-Beck Disease. PLoS Genetics, 2009, 5, e1000616.	3.5	96
140	Multiple Organ System Defects and Transcriptional Dysregulation in the Nipbl+/â^' Mouse, a Model of Cornelia de Lange Syndrome. PLoS Genetics, 2009, 5, e1000650.	3.5	222
141	Animal–human connections, "one health,―and the syndemic approach to prevention. Social Science and Medicine, 2009, 68, 991-995.	3.8	117
142	Epigenetic Effects on Integration of Limb Lengths in a Mouse Model: Selective Breeding for High Voluntary Locomotor Activity. Evolutionary Biology, 2009, 36, 88.	1.1	20
143	Deciphering the Palimpsest: Studying the Relationship Between Morphological Integration and Phenotypic Covariation. Evolutionary Biology, 2009, 36, 355-376.	1.1	373
144	The State of Evolutionary Biology (The Journal): A Progress Report. Evolutionary Biology, 2009, 36, 423-425.	1.1	0

#	Article	lF	CITATIONS
145	A COMPARISON OF COVARIANCE STRUCTURE IN WILD AND LABORATORY MUROID CRANIA. Evolution; International Journal of Organic Evolution, 2009, 63, 1540-1556.	2.3	60
146	Unravelling the relationship between age, nociception and joint destruction in naturally occurring osteoarthritis of Dunkin Hartley guinea pigs. Pain, 2009, 141, 222-232.	4.2	72
147	Geometric Morphometrics and the Study of Development. , 2009, , 319-336.		7
148	Anatomical Imaging and Post-Genomic Biology. , 2009, , 411-426.		3
149	The relationship between variable SHH signaling and the severity of structural defects in the face and brain. FASEB Journal, 2009, 23, 180.5.	0.5	0
150	Integration, Canalization and Malformation: A conceptual framework for relating phenotypic variability and dysmorphology. FASEB Journal, 2009, 23, 180.2.	0.5	0
151	Fast interactive integration of cross-sectional image datasets and surface data for morphometric analysis. Studies in Health Technology and Informatics, 2009, 142, 183-8.	0.3	1
152	An efficient virtual dissection tool to create generic models for anatomical atlases. Studies in Health Technology and Informatics, 2009, 142, 426-8.	0.3	1
153	The False Dichotomy of Evolution versus Intelligent Design. Evolutionary Biology, 2008, 35, 1-3.	1.1	3
154	Biological spacetime and the temporal integration of functional modules: A case study of dento–gnathic developmental timing. Developmental Dynamics, 2008, 237, 1-17.	1.8	30
155	CAVEman: Standardized anatomical context for biomedical data mapping. Anatomical Sciences Education, 2008, 1, 10-18.	3.7	14
156	Phenotypic variability and craniofacial dysmorphology: increased shape variance in a mouse model for cleft lip. Journal of Anatomy, 2008, 212, 135-143.	1.5	67
157	Spatial packing, cranial base angulation, and craniofacial shape variation in the mammalian skull: testing a new model using mice. Journal of Anatomy, 2008, 212, 720-735.	1.5	131
158	A threeâ€dimensional microcomputed tomographic study of siteâ€specific variation in trabecular microarchitecture in the human second metacarpal. Journal of Anatomy, 2008, 213, 698-705.	1.5	19
159	Shortâ€faced mice and developmental interactions between the brain and the face. Journal of Anatomy, 2008, 213, 646-662.	1.5	63
160	A Novel 3-D Image-Based Morphological Method for Phenotypic Analysis. IEEE Transactions on Biomedical Engineering, 2008, 55, 2826-2831.	4.2	28
161	Articular constraint, handedness, and directional asymmetry in the human second metacarpal. Journal of Human Evolution, 2008, 54, 875-885.	2.6	49
162	Mouse models and the evolutionary developmental biology of the skull. Integrative and Comparative Biology, 2008, 48, 373-384.	2.0	82

#	Article	IF	CITATIONS
163	Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone, 2007, 40, 957-965.	2.9	178
164	Epigenetic interactions and the structure of phenotypic variation in the cranium. Evolution & Development, 2007, 9, 76-91.	2.0	163
165	Comparative morphometrics of embryonic facial morphogenesis: Implications for cleft-lip etiology. Anatomical Record, 2007, 290, 123-139.	1.4	41
166	Embryonic development of Python sebae – I: Staging criteria and macroscopic skeletal morphogenesis of the head and limbs. Zoology, 2007, 110, 212-230.	1.2	94
167	Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development, 2007, 9, 393-401.	2.0	245
168	Inactivation of Pten in Osteo-Chondroprogenitor Cells Leads to Epiphyseal Growth Plate Abnormalities and Skeletal Overgrowth. Journal of Bone and Mineral Research, 2007, 22, 1245-1259.	2.8	90
169	Effect of Voxel Size on 3D Micro-CT Analysis of Cortical Bone Porosity. Calcified Tissue International, 2007, 80, 211-219.	3.1	86
170	The Vision and Revision of Evolutionary Biology. Evolutionary Biology, 2007, 34, 1-3.	1.1	1
171	Evolution of Covariance in the Mammalian Skull. Novartis Foundation Symposium, 2007, 284, 164-190.	1.1	69
172	The bubble size distribution in wheat flour dough. Food Research International, 2006, 39, 1058-1066.	6.2	114
173	Canalization and developmental stability in the Brachyrrhine mouse. Journal of Anatomy, 2006, 208, 361-372.	1.5	41
174	Effects of developmental and functional interactions on mouse cranial variability through late ontogeny. Evolution & Development, 2006, 8, 550-567.	2.0	75
175	The brachymorph mouse and the developmental-genetic basis for canalization and morphological integration. Evolution & Development, 2006, 8, 61-73.	2.0	96
176	Myf5 â^'/â^' :MyoD â^'/â^' amyogenic fetuses reveal the importance of early contraction and static loading by striated muscle in mouse skeletogenesis. Development Genes and Evolution, 2006, 216, 1-9.	0.9	109
177	Three-dimensional microcomputed tomography imaging of basic multicellular unit-related resorption spaces in human cortical bone. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 806-816.	2.0	72
178	Trabecular bone in the bird knee responds with high sensitivity to changes in load orientation. Journal of Experimental Biology, 2006, 209, 57-65.	1.7	163
179	SERIAL HOMOLOGY AND THE EVOLUTION OF MAMMALIAN LIMB COVARIATION STRUCTURE. Evolution; International Journal of Organic Evolution, 2005, 59, 2691-2704.	2.3	245
180	THE RELATIONSHIP BETWEEN FLUCTUATING ASYMMETRY AND ENVIRONMENTAL VARIANCE IN RHESUS MACAQUE SKULLS. Evolution; International Journal of Organic Evolution, 2005, 59, 898-909.	2.3	89

#	Article	IF	CITATIONS
181	Degenerative knee joint disease in mice lacking 3′-phosphoadenosine 5′-phosphosulfate synthetase 2 (Papss2) activity: a putative model of human PAPSS2 deficiency-associated arthrosis. Osteoarthritis and Cartilage, 2005, 13, 418-425.	1.3	24
182	Bisphosphonates reduce bone mineral loss at ligament entheses after joint injury. Osteoarthritis and Cartilage, 2005, 13, 790-797.	1.3	46
183	Why are rare traits unilaterally expressed?: Trait frequency and unilateral expression for cranial nonmetric traits in humans. American Journal of Physical Anthropology, 2005, 128, 14-25.	2.1	34
184	The Study of Phenotypic Variability. , 2005, , 525-551.		12
185	Within Individual Variation. , 2005, , 191-218.		17
186	SERIAL HOMOLOGY AND THE EVOLUTION OF MAMMALIAN LIMB COVARIATION STRUCTURE. Evolution; International Journal of Organic Evolution, 2005, 59, 2691.	2.3	3
187	THE RELATIONSHIP BETWEEN FLUCTUATING ASYMMETRY AND ENVIRONMENTAL VARIANCE IN RHESUS MACAQUE SKULLS. Evolution; International Journal of Organic Evolution, 2005, 59, 898.	2.3	5
188	Variation and Variability. , 2005, , 1-7.		15
189	Serial homology and the evolution of mammalian limb covariation structure. Evolution; International Journal of Organic Evolution, 2005, 59, 2691-704.	2.3	77
190	Stabilization and mobility of the head and trunk in wild monkeys during terrestrial and flat-surface walks and gallops. Journal of Experimental Biology, 2004, 207, 1027-1042.	1.7	36
191	Craniofacial variability and morphological integration in mice susceptible to cleft lip and palate. Journal of Anatomy, 2004, 205, 501-517.	1.5	57
192	Prenatal growth of the interorbital septum in Macaca mulatta. Annals of Anatomy, 2004, 186, 435-442.	1.9	3
193	Comparison of Microcomputed Tomographic and Microradiographic Measurements of Cortical Bone Porosity. Calcified Tissue International, 2004, 74, 437-447.	3.1	121
194	Composition of the founding population of Iceland: Biological distance and morphological variation in early historic Atlantic Europe. American Journal of Physical Anthropology, 2004, 124, 257-274.	2.1	37
195	Craniofacial variability and modularity in macaques and mice. , 2004, 302B, 207-225.		110
196	Embryological origins of developmental stability: Size, shape and fluctuating asymmetry in prenatal random bred mice. , 2003, 296B, 40-57.		38
197	Angiogenesis in the distal femoral chondroepiphysis of the rabbit during development of the secondary centre of ossification. Journal of Anatomy, 2003, 203, 223-233.	1.5	16
198	Imaging skeletal pathology in mutant mice by microcomputed tomography. Journal of Rheumatology, 2003, 30, 2659-65.	2.0	20

#	Article	IF	CITATIONS
199	Canalization, developmental stability, and morphological integration in primate limbs. American Journal of Physical Anthropology, 2002, 119, 131-158.	2.1	316
200	Title is missing!. International Journal of Primatology, 2002, 23, 455-457.	1.9	0
201	Variability and size in mammals and birds. Biological Journal of the Linnean Society, 2000, 70, 571-595.	1.6	26
202	Variability and size in mammals and birds. Biological Journal of the Linnean Society, 2000, 70, 571-595.	1.6	3
203	Title is missing!. International Journal of Primatology, 1999, 20, 121-151.	1.9	58
204	Asymmetry, developmental stability, and evolution by Anders Pape Moller and John P. Swaddle. Complexity, 1999, 4, 53-55.	1.6	1
205	Tiwanaku â€~colonization': Bioarchaeological implications for migration in the Moquegua Valley, Peru. World Archaeology, 1998, 30, 238-261.	1.1	101
206	Heel, Squat, Stand, Stride. , 1998, , 435-448.		6
207	Title is missing!. International Journal of Primatology, 1997, 18, 675-676.	1.9	0
208	Stella 4.0, Research version (Win or Mac). Complexity, 1997, 2, 38-40.	1.6	14
209	Swift and sure-footed on the Savanna: A study of Hadzabe gaits and feet in Northern Tanzania. , 1997, 9, 303-321.		21
210	Biomechanical adaptation of ulnar cross-sectional morphology in brachiating primates. Journal of Morphology, 1995, 224, 111-123.	1.2	10
211	Fluctuating asymmetry inMacaca fascicularis: A study of the etiology of developmental noise. International Journal of Primatology, 1993, 14, 421-443.	1.9	28
212	Fluctuating Asymmetry in the Mammalian Skeleton. , 1988, , 187-251.		4
213	Morphometrics and Biological Anthropology in the Postgenomic Age. , 0, , 207-235.		4