Zachariah M Heiden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5837765/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal-Free Catalytic Hydrogenation of Polar Substrates by Frustrated Lewis Pairs. Inorganic Chemistry, 2011, 50, 12338-12348.	4.0	297
2	Redox-Switched Oxidation of Dihydrogen Using a Non-Innocent Ligand. Journal of the American Chemical Society, 2008, 130, 788-789.	13.7	189
3	Establishing the Hydride Donor Abilities of Main Group Hydrides. Organometallics, 2015, 34, 1818-1827.	2.3	155
4	Metal-Free Aromatic Hydrogenation: Aniline to Cyclohexyl-amine Derivatives. Journal of the American Chemical Society, 2012, 134, 4088-4091.	13.7	154
5	Homogeneous Catalytic Reduction of Dioxygen Using Transfer Hydrogenation Catalysts. Journal of the American Chemical Society, 2007, 129, 14303-14310.	13.7	116
6	Metal-free diastereoselective catalytic hydrogenations of imines using B(C6F5)3. Chemical Communications, 2011, 47, 5729.	4.1	107
7	Metal-Free Transfer Hydrogenation Catalysis by B(C ₆ F ₅) ₃ . Organometallics, 2011, 30, 4497-4500.	2.3	105
8	Proton-Assisted Activation of Dihydrogen: Mechanistic Aspects of Proton-Catalyzed Addition of H ₂ to Ru and Ir Amido Complexes. Journal of the American Chemical Society, 2009, 131, 3593-3600.	13.7	69
9	Desymmetrized Diiron Azadithiolato Carbonyls: A Step Toward Modeling the Iron-Only Hydrogenases. Organometallics, 2008, 27, 119-125.	2.3	58
10	Ammonia Oxidation by Abstraction of Three Hydrogen Atoms from a Mo–NH ₃ Complex. Journal of the American Chemical Society, 2017, 139, 2916-2919.	13.7	54
11	A new era for electron bifurcation. Current Opinion in Chemical Biology, 2018, 47, 32-38.	6.1	54
12	Catalytic Ammonia Oxidation to Dinitrogen by Hydrogen Atom Abstraction. Angewandte Chemie - International Edition, 2019, 58, 11618-11624.	13.8	52
13	Proton-Induced Lewis Acidity of Unsaturated Iridium Amides. Journal of the American Chemical Society, 2006, 128, 13048-13049.	13.7	48
14	Lewis Base Adducts Derived from Transfer Hydrogenation Catalysts: Scope and Selectivity. Organometallics, 2008, 27, 1542-1549.	2.3	31
15	Activation and Deactivation of Cp*Ir(TsDPEN) Hydrogenation Catalysts in Water. European Journal of Inorganic Chemistry, 2009, 2009, 4927-4930.	2.0	29
16	Synthesis and Reactivity of <i>o</i> -Benzylphosphino- and <i>o</i> -α-Methylbenzyl(<i>N</i> , <i>N</i> -dimethyl)amine-Boranes. Inorganic Chemistry, 2011, 50, 1470-1479.	4.0	29
17	[FeFe]â€Hydrogenase Models and Hydrogen: Oxidative Addition of Dihydrogen and Silanes. Angewandte Chemie - International Edition, 2008, 47, 9756-9759.	13.8	28
18	Protonation of Ferrous Dinitrogen Complexes Containing a Diphosphine Ligand with a Pendent Amine. Inorganic Chemistry, 2013, 52, 4026-4039.	4.0	28

Zachariah M Heiden

#	Article	IF	CITATIONS
19	Quantification of Lewis acid induced BrÃ,nsted acidity of protogenic Lewis bases. Dalton Transactions, 2017, 46, 5976-5985.	3.3	27
20	Utilization of a Fluorescent Dye Molecule as a Proton and Electron Reservoir. Angewandte Chemie - International Edition, 2018, 57, 3377-3380.	13.8	21
21	Electronic and Steric Influences of Pendant Amine Groups on the Protonation of Molybdenum Bis(dinitrogen) Complexes. Inorganic Chemistry, 2015, 54, 4409-4422.	4.0	16
22	Coordination Chemistry of the Soft Chiral Lewis Acid [Cp*Ir(TsDPEN)] ⁺ . Inorganic Chemistry, 2011, 50, 5558-5566.	4.0	14
23	Proton and Electron Additions to Iron(II) Dinitrogen Complexes Containing Pendant Amines. Organometallics, 2014, 33, 1333-1336.	2.3	14
24	Synthesis and characterization of chiral and achiral diamines containing one or two BODIPY molecules. New Journal of Chemistry, 2017, 41, 14370-14378.	2.8	13
25	Influence of Lewis acid strength on hydride transfer to unsaturated substrates. Dalton Transactions, 2018, 47, 3985-3991.	3.3	12
26	Redox switchable catalysis utilizing a fluorescent dye. Chemical Communications, 2019, 55, 11430-11433.	4.1	11
27	Comparison of Intramolecular and Intermolecular Ammonium and Phosphonium Borohydrides in Hydrogenâ€; Protonâ€; and Hydrideâ€Transfer Reactions. European Journal of Inorganic Chemistry, 2017, 2017, 2032-2039.	2.0	10
28	Microwave-Assisted Synthesis of Zirconium Phosphate Nanoplatelet-Supported Ru-Anadem Nanostructures and Their Catalytic Study for the Hydrogenation of Acetophenone. ACS Applied Materials & Interfaces, 2020, 12, 30670-30679.	8.0	10
29	Deconvoluting the Innocent vs. Nonâ€Innocent Behavior of <i>N</i> , <i>N</i> â€Diethylphenylazothioformamide Ligands with Copper Sources. European Journal of Inorganic Chemistry, 2017, 2017, 5576-5581.	2.0	10
30	Catalytic Ammonia Oxidation to Dinitrogen by Hydrogen Atom Abstraction. Angewandte Chemie, 2019, 131, 11744-11750.	2.0	9
31	Establishing the Steric Bulk of Main Group Hydrides in Reduction Reactions. Israel Journal of Chemistry, 2015, 55, 226-234.	2.3	8
32	Influence of intramolecular vs. intermolecular phosphonium-borohydrides in catalytic hydrogen, hydride, and proton transfer reactions. Dalton Transactions, 2017, 46, 9382-9393.	3.3	8
33	Connecting Solution-Phase to Single-Molecule Properties of Ni(Salophen). Journal of Physical Chemistry Letters, 2019, 10, 3525-3530.	4.6	8
34	Discovery of low energy pathways to metal-mediated Bî€N bond reduction guided by computation and experiment. Chemical Science, 2015, 6, 7258-7266.	7.4	6
35	Investigation of main group promoted carbon dioxide reduction. Tetrahedron, 2019, 75, 2099-2105.	1.9	6
36	Tuning the reduction potentials of benzoquinone through the coordination to Lewis acids. Physical Chemistry Chemical Physics, 2021, 23, 9822-9831.	2.8	6

Zachariah M Heiden

#	Article	IF	CITATIONS
37	Redox Chemistry of BODIPY Dyes. , 0, , .		5
38	Synthesis and characterization of hydrazine-appended BODIPY dyes and the related aminomethyl complexes. New Journal of Chemistry, 2019, 43, 13103-13111.	2.8	4
39	Substitution effects on the binding interactions of redox-active arylazothioformamide ligands and copper(I) salts. Supramolecular Chemistry, 2020, 32, 466-478.	1.2	4
40	Utilization of a Fluorescent Dye Molecule as a Proton and Electron Reservoir. Angewandte Chemie, 2018, 130, 3435-3438.	2.0	3
41	Utilization of BODIPY-based redox events to manipulate the Lewis acidity of fluorescent boranes. Chemical Communications, 2022, , .	4.1	2
42	Frontispiz: Catalytic Ammonia Oxidation to Dinitrogen by Hydrogen Atom Abstraction. Angewandte Chemie, 2019, 131, .	2.0	1
43	Inorganic chemistry of the p-block elements. Dalton Transactions, 2019, 48, 6666-6668.	3.3	1
44	Frontispiece: Catalytic Ammonia Oxidation to Dinitrogen by Hydrogen Atom Abstraction. Angewandte Chemie - International Edition, 2019, 58, .	13.8	0