Andrew J Macpherson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5837578/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innate lymphoid cell characterization in the rat and their correlation to gut commensal microbes. European Journal of Immunology, 2022, 52, 717-729.	1.6	2
2	Gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N6-carboxymethyllysine. Nature Neuroscience, 2022, 25, 295-305.	7.1	84
3	Microbial drivers of DSS variability. Nature Microbiology, 2022, 7, 478-479.	5.9	1
4	Noninvasive assessment of gut function using transcriptional recording sentinel cells. Science, 2022, 376, eabm6038.	6.0	45
5	Long-term evolution and short-term adaptation of microbiota strains and sub-strains in mice. Cell Host and Microbe, 2021, 29, 650-663.e9.	5.1	58
6	Commensal microbiota divergently affect myeloid subsets in the mammalian central nervous system during homeostasis and disease. EMBO Journal, 2021, 40, e108605.	3.5	12
7	Parallelism of intestinal secretory IgA shapes functional microbial fitness. Nature, 2021, 598, 657-661.	13.7	60
8	Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metabolism, 2021, 33, 2260-2276.e7.	7.2	173
9	Genotype–phenotype associations of polymorphisms within the gene locus of NOD-like receptor pyrin domain containing 3 in Swiss inflammatory bowel disease patients. BMC Gastroenterology, 2021, 21, 310.	0.8	5
10	Intraperitoneal microbial contamination drives post-surgical peritoneal adhesions by mesothelial EGFR-signaling. Nature Communications, 2021, 12, 7316.	5.8	22
11	The University of Zimbabwe College of Health Sciences (UZ-CHS) BIRTH COHORT study: rationale, design and methods. BMC Infectious Diseases, 2020, 20, 725.	1.3	10
12	In Silico Comparison Shows that the Pan-Genome of a Dairy-Related Bacterial Culture Collection Covers Most Reactions Annotated to Human Microbiomes. Microorganisms, 2020, 8, 966.	1.6	4
13	Different effects of constitutive and induced microbiota modulation on microglia in a mouse model of Alzheimer's disease. Acta Neuropathologica Communications, 2020, 8, 119.	2.4	75
14	Mucosal or systemic microbiota exposures shape the BÂcell repertoire. Nature, 2020, 584, 274-278.	13.7	132
15	Warmth Prevents Bone Loss Through the Gut Microbiota. Cell Metabolism, 2020, 32, 575-590.e7.	7.2	88
16	Microbial–host molecular exchange and its functional consequences in early mammalian life. Science, 2020, 368, 604-607.	6.0	91
17	Breast Milk Modulates Transgenerational Immune Inheritance. Cell, 2020, 181, 1202-1204.	13.5	10
18	Microbiota-Induced Type I Interferons Instruct a Poised Basal State of Dendritic Cells. Cell, 2020, 181, 1080-1096.e19.	13.5	139

ANDREW J MACPHERSON

#	Article	IF	CITATIONS
19	Progressive malnutrition despite percutaneous endoscopic gastrostomy. Frontline Gastroenterology, 2020, 12, flgastro-2020-101413.	0.9	0
20	Escherichia coli limits Salmonella Typhimurium infections after diet shifts and fat-mediated microbiota perturbation in mice. Nature Microbiology, 2019, 4, 2164-2174.	5.9	88
21	Microbial network disturbances in relapsing refractory Crohn's disease. Nature Medicine, 2019, 25, 323-336.	15.2	277
22	Epithelial endoplasmic reticulum stress orchestrates a protective IgA response. Science, 2019, 363, 993-998.	6.0	51
23	Endoscopic rescue therapy of a distally perforated, retroperitoneal stent after EUS-guided pancreaticogastrostomy. VideoGIE, 2019, 4, 169-171.	0.3	1
24	Vegetarian or glutenâ€free diets in patients with inflammatory bowel disease are associated with lower psychological wellâ€being and a different gut microbiota, but no beneficial effects on the course of the disease. United European Gastroenterology Journal, 2019, 7, 767-781.	1.6	67
25	The immunological functions of the Appendix: An example of redundancy?. Seminars in Immunology, 2018, 36, 31-44.	2.7	68
26	Defective immuno- and thymoproteasome assembly causes severe immunodeficiency. Scientific Reports, 2018, 8, 5975.	1.6	13
27	IgA Function in Relation to the Intestinal Microbiota. Annual Review of Immunology, 2018, 36, 359-381.	9.5	196
28	Antibodies that I ^{IgA} te our intestinal microbes. Science Immunology, 2018, 3, .	5.6	6
29	EUS-guided hepaticojejunostomy with transjejunal per-oral cholangioscopy and electrohydraulic lithotripsy in a patient with complicated choledocholithiasis after Roux-en-Y gastric bypass. VideoGIE, 2018, 3, 351-353.	0.3	2
30	Endoscopic intra-abdominal rescue therapy of a dislodged EUS-guided hepaticogastrostomy stent. VideoGIE, 2018, 3, 308-310.	0.3	1
31	Antibodies Set Boundaries Limiting Microbial Metabolite Penetration and the Resultant Mammalian Host Response. Immunity, 2018, 49, 545-559.e5.	6.6	121
32	EUS-guided pancreaticogastrostomy and transgastric per-oralÂpancreatoscopy with electrohydraulic lithotripsy in aÂpatientÂwith chronic hereditary pancreatitis and several intraductal stones. VideoGIE, 2018, 3, 238-240.	0.3	6
33	The presence of genetic risk variants within PTPN2 and PTPN22 is associated with intestinal microbiota alterations in Swiss IBD cohort patients. PLoS ONE, 2018, 13, e0199664.	1.1	35
34	IgA—about the unexpected. Journal of Experimental Medicine, 2018, 215, 1965-1966.	4.2	2
35	D-lactic Acidosis: Successful Suppression of D-lactate–Producing <i>Lactobacillus</i> by Probiotics. Pediatrics, 2018, 142, .	1.0	26
36	How nutrition and the maternal microbiota shape the neonatal immune system. Nature Reviews Immunology, 2017, 17, 508-517.	10.6	270

#	Article	IF	CITATIONS
37	High-Quality Whole-Genome Sequences of the Oligo-Mouse-Microbiota Bacterial Community. Genome Announcements, 2017, 5, .	0.8	49
38	The Stimulation of Macrophages with TLR Ligands Supports Increased IL-19 Expression in Inflammatory Bowel Disease Patients and in Colitis Models. Journal of Immunology, 2017, 199, 2570-2584.	0.4	28
39	Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nature Microbiology, 2017, 2, 16215.	5.9	313
40	Analysis of bacterial-surface-specific antibodies in body fluids using bacterial flow cytometry. Nature Protocols, 2016, 11, 1531-1553.	5.5	67
41	Complete Genome Sequences of 12 Species of Stable Defined Moderately Diverse Mouse Microbiota 2. Genome Announcements, 2016, 4, .	0.8	45
42	The maternal microbiota drives early postnatal innate immune development. Science, 2016, 351, 1296-1302.	6.0	871
43	Penetrability of the inner mucus layer: who is out there?. EMBO Reports, 2015, 16, 127-129.	2.0	7
44	The bilateral responsiveness between intestinal microbes and IgA. Trends in Immunology, 2015, 36, 460-470.	2.9	136
45	The outer mucus layer hosts a distinct intestinal microbial niche. Nature Communications, 2015, 6, 8292.	5.8	390
46	The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation. Immunity, 2015, 43, 998-1010.	6.6	362
47	Independence Day for IgA. Immunity, 2015, 43, 416-418.	6.6	13
48	Microbiota-Derived Compounds Drive Steady-State Granulopoiesis via MyD88/TICAM Signaling. Journal of Immunology, 2014, 193, 5273-5283.	0.4	202
49	Stratification and compartmentalisation of immunoglobulin responses to commensal intestinal microbes. Seminars in Immunology, 2013, 25, 358-363.	2.7	45
50	Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine. Journal of Experimental Medicine, 2012, 209, 365-377.	4.2	195
51	Homeland Security: IgA immunity at the frontiers of the body. Trends in Immunology, 2012, 33, 160-167.	2.9	167
52	Innate and adaptive immunity in host-microbiota mutualism. Frontiers in Bioscience - Scholar, 2012, S4, 685-698.	0.8	13
53	The habitat, double life, citizenship, and forgetfulness of IgA. Immunological Reviews, 2012, 245, 132-146.	2.8	105
54	Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nature Medicine, 2011, 17, 1585-1593.	15.2	323

#	Article	IF	CITATIONS
55	Immunoglobulin A. Current Opinion in Gastroenterology, 2011, 27, 529-533.	1.0	33
56	Reversible Microbial Colonization of Germ-Free Mice Reveals the Dynamics of IgA Immune Responses. Science, 2010, 328, 1705-1709.	6.0	657
57	The mucosal firewalls against commensal intestinal microbes. Seminars in Immunopathology, 2009, 31, 145-149.	2.8	95
58	Innate and Adaptive Immunity Cooperate Flexibly to Maintain Host-Microbiota Mutualism. Science, 2009, 325, 617-620.	6.0	443
59	Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Seminars in Immunology, 2007, 19, 59-69.	2.7	637
60	Mechanisms of Neonatal Mucosal Antibody Protection. Journal of Immunology, 2006, 177, 6256-6262.	0.4	187
61	Interactions between commensal intestinal bacteria and the immune system. Nature Reviews Immunology, 2004, 4, 478-485.	10.6	1,325
62	Reply to 'On the implications of polyclonal B cell activation'. Nature Immunology, 2003, 4, 932-932.	7.0	0