Franz X Heinz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5837284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The envelope glycoprotein from tick-borne encephalitis virus at 2 Ã resolution. Nature, 1995, 375, 291-298.	27.8	1,344
2	Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO Journal, 2004, 23, 728-738.	7.8	526
3	Structural basis of potent Zika–dengue virus antibody cross-neutralization. Nature, 2016, 536, 48-53.	27.8	465
4	Mutational Evidence for an Internal Fusion Peptide in Flavivirus Envelope Protein E. Journal of Virology, 2001, 75, 4268-4275.	3.4	295
5	Structural Changes and Functional Control of the Tick-Borne Encephalitis Virus Glycoprotein E by the Heterodimeric Association with Protein prM. Virology, 1994, 198, 109-117.	2.4	247
6	Distinguishing features of current COVID-19 vaccines: knowns and unknowns of antigen presentation and modes of action. Npj Vaccines, 2021, 6, 104.	6.0	241
7	Flaviviruses and flavivirus vaccines. Vaccine, 2012, 30, 4301-4306.	3.8	226
8	Field effectiveness of vaccination against tick-borne encephalitis. Vaccine, 2007, 25, 7559-7567.	3.8	225
9	Adaptation of Tick-Borne Encephalitis Virus to BHK-21 Cells Results in the Formation of Multiple Heparan Sulfate Binding Sites in the Envelope Protein and Attenuation In Vivo. Journal of Virology, 2001, 75, 5627-5637.	3.4	206
10	Cryptic Properties of a Cluster of Dominant Flavivirus Cross-Reactive Antigenic Sites. Journal of Virology, 2006, 80, 9557-9568.	3.4	204
11	Cleavage of protein prM is necessary for infection of BHK-21 cells by tick-borne encephalitis virus FN1. Journal of General Virology, 2003, 84, 183-191.	2.9	191
12	The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Reports, 2018, 19, 206-224.	4.5	188
13	Mapping of Functional Elements in the Stem-Anchor Region of Tick-Borne Encephalitis Virus Envelope Protein E. Journal of Virology, 1999, 73, 5605-5612.	3.4	178
14	Sequence of the structural proteins of tick-borne encephalitis virus (Western subtype) and comparative analysis with other flaviviruses. Virology, 1988, 166, 197-205.	2.4	173
15	Vaccination and Tick-borne Encephalitis, Central Europe. Emerging Infectious Diseases, 2013, 19, 69-76.	4.3	169
16	Flavivirus membrane fusion. Journal of General Virology, 2006, 87, 2755-2766.	2.9	162
17	The Antigenic Structure of Zika Virus and Its Relation to Other Flaviviruses: Implications for Infection and Immunoprophylaxis. Microbiology and Molecular Biology Reviews, 2017, 81, .	6.6	156
18	Epitope model of tick-borne encephalitis virus envelope glycoprotein E: Analysis of structural properties, role of carbohydrate side chain, and conformational changes occurring at acidic pH. Virology, 1989, 169, 90-99.	2.4	149

FRANZ X HEINZ

#	Article	IF	CITATIONS
19	Genome sequence of tick-borne encephalitis virus (Western subtype) and comparative analysis of nonstructural proteins with other flaviviruses. Virology, 1989, 173, 291-301.	2.4	144
20	Establishment of PCR for the early diagnosis of herpes simplex encephalitis. Journal of Medical Virology, 1990, 32, 77-82.	5.0	125
21	Membrane Fusion Activity of Tick-Borne Encephalitis Virus and Recombinant Subviral Particles in a Liposomal Model System. Virology, 2000, 269, 37-46.	2.4	124
22	Attenuation of Tick-Borne Encephalitis Virus by Structure-Based Site-Specific Mutagenesis of a Putative Flavivirus Receptor Binding Site. Journal of Virology, 2000, 74, 9601-9609.	3.4	123
23	Flavivirus Structure and Membrane Fusion. Advances in Virus Research, 2003, 59, 63-97.	2.1	123
24	Membrane Interactions of the Tick-Borne Encephalitis Virus Fusion Protein E at Low pH. Journal of Virology, 2002, 76, 3784-3790.	3.4	119
25	In vitro-synthesized infectious RNA as an attenuated live vaccine in a flavivirus model. Nature Medicine, 1998, 4, 1438-1440.	30.7	113
26	Immunogenicity and reactogenicity of a highly purified vaccine against tick-borne encephalitis. Journal of Medical Virology, 1980, 6, 103-109.	5.0	105
27	Characteristics of antibody responses in tick-borne encephalitis vaccination breakthroughs. Vaccine, 2009, 27, 7021-7026.	3.8	97
28	Involvement of Lipids in Different Steps of the Flavivirus Fusion Mechanism. Journal of Virology, 2003, 77, 7856-7862.	3.4	86
29	Preparation of a highly purified vaccine against tick-borne encephalitis by continuous flow zonal ultracentrifugation. Journal of Medical Virology, 1980, 6, 213-221.	5.0	81
30	Characterization of a Structural Intermediate of Flavivirus Membrane Fusion. PLoS Pathogens, 2007, 3, e20.	4.7	76
31	Variation of the Specificity of the Human Antibody Responses after Tick-Borne Encephalitis Virus Infection and Vaccination. Journal of Virology, 2014, 88, 13845-13857.	3.4	76
32	Specificities of Human CD4 ⁺ T Cell Responses to an Inactivated Flavivirus Vaccine and Infection: Correlation with Structure and Epitope Prediction. Journal of Virology, 2014, 88, 7828-7842.	3.4	67
33	The molecular biology of tick-borne encephalitis virus. Apmis, 1993, 101, 735-745.	2.0	64
34	Flavivirus structural heterogeneity: implications for cell entry. Current Opinion in Virology, 2017, 24, 132-139.	5.4	62
35	Dissection of Antibody Specificities Induced by Yellow Fever Vaccination. PLoS Pathogens, 2013, 9, e1003458.	4.7	61
36	Role of Metastability and Acidic pH in Membrane Fusion by Tick-Borne Encephalitis Virus. Journal of Virology, 2001, 75, 7392-7398.	3.4	60

FRANZ X HEINZ

#	Article	IF	CITATIONS
37	A novel mechanism of antibody-mediated enhancement of flavivirus infection. PLoS Pathogens, 2017, 13, e1006643.	4.7	56
38	Characterization of a Membrane-Associated Trimeric Low-pH-Induced Form of the Class II Viral Fusion Protein E from Tick-Borne Encephalitis Virus and Its Crystallization. Journal of Virology, 2004, 78, 3178-3183.	3.4	55
39	Dynamics of CD4 T Cell and Antibody Responses in COVID-19 Patients With Different Disease Severity. Frontiers in Medicine, 2020, 7, 592629.	2.6	54
40	Pre-existing yellow fever immunity impairs and modulates the antibody response to tick-borne encephalitis vaccination. Npj Vaccines, 2019, 4, 38.	6.0	47
41	Effect of pre-existing anti-tick-borne encephalitis virus immunity on neutralising antibody response to the Vero cell-derived, inactivated Japanese encephalitis virus vaccine candidate IC51. Vaccine, 2008, 26, 6151-6156.	3.8	46
42	Membrane Anchors of the Structural Flavivirus Proteins and Their Role in Virus Assembly. Journal of Virology, 2016, 90, 6365-6378.	3.4	45
43	Efficiency of the polymerase chain reaction for the detection of human immunodeficiency virus type (HIV-1) DNA in the lymphocytes of infected persons: Comparison to antigen-enzyme-linked immunosorbent assay and virus isolation. Journal of Medical Virology, 1989, 29, 249-255.	5.0	44
44	Impact of Quaternary Organization on the Antigenic Structure of the Tick-Borne Encephalitis Virus Envelope Glycoprotein E. Journal of Virology, 2009, 83, 8482-8491.	3.4	43
45	Immunodominance and Functional Activities of Antibody Responses to Inactivated West Nile Virus and Recombinant Subunit Vaccines in Mice. Journal of Virology, 2011, 85, 1994-2003.	3.4	43
46	Human CD4+ T Helper Cell Responses after Tick-Borne Encephalitis Vaccination and Infection. PLoS ONE, 2015, 10, e0140545.	2.5	36
47	Molecular aspects of TBE virus research. Vaccine, 2003, 21, S3-S10.	3.8	33
48	Profiles of current COVID-19 vaccines. Wiener Klinische Wochenschrift, 2021, 133, 271-283.	1.9	32
49	Heterologous gene expression by infectious and replicon vectors derived from tick-borne encephalitis virus and direct comparison of this flavivirus system with an alphavirus replicon. Journal of General Virology, 2005, 86, 1045-1053.	2.9	30
50	Possible influence of the mutant CCR5 allele on vertical transmission of HIV-1. , 1998, 55, 51-55.		27
51	Impact of flavivirus vaccine-induced immunity on primary Zika virus antibody response in humans. PLoS Neglected Tropical Diseases, 2020, 14, e0008034.	3.0	27
52	Structural Influence on the Dominance of Virus-Specific CD4 T Cell Epitopes in Zika Virus Infection. Frontiers in Immunology, 2018, 9, 1196.	4.8	25
53	Comparison of line probe assay (LIPA) and sequence analysis for detection of HIV-1 drug resistance. , 1999, 57, 283-289.		23
54	Immunization with Immune Complexes Modulates the Fine Specificity of Antibody Responses to a Flavivirus Antigen. Journal of Virology, 2015, 89, 7970-7978.	3.4	23

FRANZ X HEINZ

#	Article	lF	CITATIONS
55	The Membrane-Proximal "Stem―Region Increases the Stability of the Flavivirus E Protein Postfusion Trimer and Modulates Its Structure. Journal of Virology, 2013, 87, 9933-9938.	3.4	20
56	Aluminum Hydroxide Influences Not Only the Extent but Also the Fine Specificity and Functional Activity of Antibody Responses to Tick-Borne Encephalitis Virus in Mice. Journal of Virology, 2013, 87, 12187-12195.	3.4	18
57	Protein structure shapes immunodominance in the CD4 T cell response to yellow fever vaccination. Scientific Reports, 2017, 7, 8907.	3.3	18
58	Differences in the Postfusion Conformations of Full-Length and Truncated Class II Fusion Protein E of Tick-Borne Encephalitis Virus. Journal of Virology, 2005, 79, 6511-6515.	3.4	17
59	Primary immune responses are negatively impacted by persistent herpesvirus infections in older people: results from an observational study on healthy subjects and a vaccination trial on subjects aged more than 70 years old. EBioMedicine, 2022, 76, 103852.	6.1	17
60	Evolution and activation mechanism of the flavivirus class II membrane-fusion machinery. Nature Communications, 2022, 13, .	12.8	17
61	Tick-Borne Encephalitis in Vaccinated Patients: A Retrospective Case-Control Study and Analysis of Vaccination Field Effectiveness in Austria From 2000 to 2018. Journal of Infectious Diseases, 2023, 227, 512-521.	4.0	10
62	Extensive flavivirus E trimer breathing accompanies stem zippering of the postâ€fusion hairpin. EMBO Reports, 2020, 21, e50069.	4.5	8
63	CD4 T Cell Determinants in West Nile Virus Disease and Asymptomatic Infection. Frontiers in Immunology, 2020, 11, 16.	4.8	7
64	Dynamics and Extent of Non-Structural Protein 1-Antibody Responses in Tick-Borne Encephalitis Vaccination Breakthroughs and Unvaccinated Patients. Viruses, 2021, 13, 1007.	3.3	7
65	The regional decline and rise of tick-borne encephalitis incidence do not correlate with Lyme borreliosis, Austria, 2005 to 2018. Eurosurveillance, 2021, 26, .	7.0	6
66	Entry Functions and Antigenic Structure of Flavivirus Envelope Proteins. Novartis Foundation Symposium, 2008, , 57-73.	1.1	5
67	Different Cross-Reactivities of IgM Responses in Dengue, Zika and Tick-Borne Encephalitis Virus Infections. Viruses, 2021, 13, 596.	3.3	5
68	Impact of structural dynamics on biological functions of flaviviruses. FEBS Journal, 2023, 290, 1973-1985.	4.7	5
69	Profile of SARS-CoV-2. Wiener Klinische Wochenschrift, 2020, 132, 635-644.	1.9	4
70	Possible influence of the mutant CCR5 allele on vertical transmission of HIVâ€1. Journal of Medical Virology, 1998, 55, 51-55.	5.0	4
71	When it is better to stay together. Nature Immunology, 2019, 20, 1266-1268.	14.5	1
72	An Absolutely Conserved Tryptophan in the Stem of the Envelope Protein E of Flaviviruses Is Essential for the Formation of Stable Particles. Viruses, 2021, 13, 1727.	3.3	1

		Franz X Heinz	
#	Article	IF	CITATIONS
73	Obituary for Christian Kunz, 1927–2020. Wiener Klinische Wochenschrift, 2020, 132, 410-411.	1.9	Ο