List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5837197/publications.pdf Version: 2024-02-01

Ρομέςη Βάτρα

#	Article	IF	CITATIONS
1	Analysis of radial expansion, eversion, and cavitation of soft functionally graded material spheres. Mathematics and Mechanics of Solids, 2023, 28, 208-228.	1.5	1
2	Fracture toughness of single layer boronitrene sheet using MD simulations. Computational Materials Science, 2022, 203, 111150.	1.4	0
3	Finite element method based micromechanical methodology for homogenizing fiber/fabrics-reinforced composites and their progressive failure. Composite Structures, 2022, 286, 115279.	3.1	3
4	First failure load of sandwich beams under transient loading using a space–time coupled finite element method. Thin-Walled Structures, 2022, 173, 108960.	2.7	4
5	Robust model reference adaptive controller for atmospheric plasma spray process. SN Applied Sciences, 2022, 4, 1.	1.5	2
6	Analysis of Stiction in Nanoelectromechanical Systems Using Molecular Dynamics Simulations and Continuum Theory. Journal of Elasticity, 2022, 151, 143-157.	0.9	1
7	Optimization of blast mitigating sandwich structures with fiber-reinforced face sheets and PVC foam layers as core. Thin-Walled Structures, 2022, 179, 109721.	2.7	11
8	Misuse of Eringen's nonlocal elasticity theory for functionally graded materials. International Journal of Engineering Science, 2021, 159, 103425.	2.7	19
9	Adaptive process control for achieving consistent particles' states in atmospheric plasma spray process. SN Applied Sciences, 2021, 3, 1.	1.5	4
10	Material tailoring in three-dimensional flexural deformations of functionally graded material beams. Composite Structures, 2021, 259, 113232.	3.1	3
11	Comments on "M.S. Wu, a pressure loaded soft functionally gradient spherical capsule under finite deformationâ€; mechanics of materials, 150 (2020) 103573. Mechanics of Materials, 2021, 155, 103720.	1.7	0
12	Effect of extreme in-plane and transverse stiffness ratios on frequencies and load transfer between face sheets and core of rectangular sandwich plates. Composite Structures, 2021, 278, 114730.	3.1	2
13	Dynamics of pull and release of graphene nanoribbons. Computational Materials Science, 2021, 197, 110568.	1.4	0
14	Flexure of functionally graded soft material rectangular beams into circular arcs. Composite Structures, 2021, 272, 114055.	3.1	4
15	Simultaneous recovery of transverse stresses at all points in a plate. International Journal of Engineering Science, 2021, 169, 103570.	2.7	7
16	Ballistic performance of ceramic and ceramic-metal composite plates with JH1, JH2 and JHB material models. International Journal of Impact Engineering, 2020, 137, 103469.	2.4	40
17	Analysis of three-dimensional bending deformations and failure of wet and dry laminates. Composite Structures, 2020, 252, 112687.	3.1	7
18	Up to lowest 100 frequencies of rectangular plates using Jacobi polynomials and TSNDT. Journal of Sound and Vibration, 2020, 480, 115352.	2.1	5

#	Article	IF	CITATIONS
19	Casimir force and its effects on pull-in instability modelled using molecular dynamics simulations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20200311.	1.0	3
20	Free Vibration of Thick Quadrilateral Laminates Using Third-Order Shear-Normal Deformation Theory. AIAA Journal, 2020, 58, 4580-4594.	1.5	4
21	Numerical techniques to find optimal input parameters for achieving mean particles' temperature and axial velocity in atmospheric plasma spray process. Scientific Reports, 2020, 10, 21483.	1.6	4
22	Kearsley-type instabilities in finite deformations of transversely isotropic and incompressible hyperelastic materials. International Journal of Solids and Structures, 2020, 196-197, 171-178.	1.3	3
23	Optimum First Failure Loads of One- and Two-Core Doubly Curved Sandwich Shells. AIAA Journal, 2020, 58, 3665-3679.	1.5	4
24	Prediction of elastic moduli and ultimate strength of fiber/yarn-reinforced elastic–plastic matrix using Fourier series approach and cuboidal/wedge sub-volumes. International Journal of Non-Linear Mechanics, 2020, 125, 103539.	1.4	6
25	Micromechanical progressive damage analysis of inter- and intra-layer failures in fiber-reinforced composite laminates. Journal of Composite Materials, 2020, 54, 2913-2942.	1.2	2
26	Free Vibration of Thick Laminated Quadrilateral Plates Using TSNDT. , 2020, , .		0
27	Impact analysis of PEEK/ceramic/gelatin composite for finding behind the armor trauma. Composite Structures, 2020, 237, 111863.	3.1	15
28	Lowest Twelve Frequencies of Sandwich Plates Using Third-Order Shear-Normal Deformation Theory. AIAA Journal, 2020, 58, 1821-1835.	1.5	4
29	Response of Sandwich Structures to Blast Loads. , 2020, , 281-320.		0
30	Beam-Based Vibration Energy Harvesters Tunable Through Folding. Journal of Vibration and Acoustics, Transactions of the ASME, 2019, 141, .	1.0	5
31	Examining T-peel specimen bond length effects: Experimental and numerical explorations of transitions to steady-state debonding. International Journal of Solids and Structures, 2019, 180-181, 72-83.	1.3	11
32	Numerical simulation of underwater explosion wave propagation in water–solid–air/water system using ghost fluid/solid method. Journal of Fluids and Structures, 2019, 90, 354-378.	1.5	7
33	Vibrations of an Incompressible Linearly Elastic Plate Using Discontinuous Finite Element Basis Functions for Pressure. Journal of Vibration and Acoustics, Transactions of the ASME, 2019, 141, .	1.0	1
34	Accuracy of Föppl–von Karman membrane theory for determining elastic constants of monolayer graphene. International Journal of Mechanical Sciences, 2019, 163, 105154.	3.6	4
35	Reducing stress concentration factor by strengthening circular hole with functionally graded incompressible material layer. Thin-Walled Structures, 2019, 144, 106223.	2.7	7
36	On preferential debonding during demolding of a sandwiched elastomeric layer. International Journal of Solids and Structures, 2019, 170, 123-141.	1.3	3

#	Article	IF	CITATIONS
37	Optimum first failure load design of one/two-core sandwich plates under blast loads, and their ultimate loads. Composite Structures, 2019, 224, 111022.	3.1	12
38	Sensitivity of responses of three micro-mechanics approaches to changes in unit cell configuration and inclusion shape. Composite Structures, 2019, 213, 118-132.	3.1	6
39	Effect of Reissner's Parameter on Strain Energies of Spherical Sandwich Shells. AIAA Journal, 2019, 57, 4942-4952.	1.5	3
40	Free and Forced Vibrations of Monolithic and Composite Rectangular Plates With Interior Constrained Points. Journal of Vibration and Acoustics, Transactions of the ASME, 2019, 141, .	1.0	6
41	Free vibration of bi-directional functionally graded material circular beams using shear deformation theory employing logarithmic function of radius. Composite Structures, 2019, 210, 217-230.	3.1	32
42	Experimental and micromechanical investigation of T300/7901 unidirectional composite strength. Polymer Composites, 2019, 40, 2639-2652.	2.3	26
43	Torsion of bi-directional functionally graded truncated conical cylinders. Composite Structures, 2019, 210, 831-839.	3.1	1
44	Blast loading of bumper shielded hybrid two-core Miura-ori/honeycomb core sandwich plates. Thin-Walled Structures, 2018, 129, 45-57.	2.7	40
45	A review of Winkler's foundation and its profound influence on adhesion and soft matter applications. Soft Matter, 2018, 14, 3669-3683.	1.2	90
46	Characterizing fracture performance and the interaction of propagating cracks with locally weakened interfaces in adhesive joints. International Journal of Adhesion and Adhesives, 2018, 82, 196-205.	1.4	14
47	Damage and Failure of Blast Loaded Fiber-Reinforced Composite Laminates Considering Material and Geometric Nonlinearities. Springer Transactions in Civil and Environmental Engineering, 2018, , 227-245.	0.3	0
48	Analytical solution for cylindrical bending of two-layered corrugated and webcore sandwich panels. Thin-Walled Structures, 2018, 123, 509-519.	2.7	32
49	Stretching and bending deformations due to normal and shear tractions of doubly curved shells using third-order shear and normal deformable theory. Mechanics of Advanced Materials and Structures, 2018, 25, 1276-1296.	1.5	10
50	Optimal cure cycle parameters for minimizing residual stresses in fiber-reinforced polymer composite laminates. Journal of Composite Materials, 2018, 52, 773-792.	1.2	42
51	An immersed boundary formulation for simulating high-speed compressible viscous flows with moving solids. Journal of Computational Physics, 2018, 354, 672-691.	1.9	33
52	A common framework for three micromechanics approaches to analyze elasto-plastic deformations of fiber-reinforced composites. International Journal of Mechanical Sciences, 2018, 148, 540-553.	3.6	15
53	Torsional deformations and material tailoring of orthotropic bi-directional FGM hollow truncated conical cylinders with curved lateral surfaces. International Journal of Engineering Science, 2018, 133, 336-351.	2.7	8
54	Material tailoring for reducing stress concentration factor at a circular hole in a functionally graded material (FGM) panel. Composite Structures, 2018, 205, 49-57.	3.1	24

#	Article	IF	CITATIONS
55	Stress wave propagation in Boron-Nitride nanotubes. Computational Materials Science, 2017, 130, 144-151.	1.4	9
56	Nonequilibrium temperature measurement in a thermal conduction process. Physical Review E, 2017, 95, 013302.	0.8	11
57	Thermal response of ceramic matrix nanocomposite cylindrical shells using Eshelby-Mori-Tanaka homogenization scheme. Composites Part B: Engineering, 2017, 118, 41-53.	5.9	39
58	Binding affinity between small molecules in solvent and polymer film using molecular dynamics simulations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 152-160.	2.3	9
59	Rifle bullet penetration into ballistic gelatin. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 67, 40-50.	1.5	31
60	Constrained moving leastâ€squares immersed boundary method for fluidâ€structure interaction analysis. International Journal for Numerical Methods in Fluids, 2017, 85, 675-692.	0.9	6
61	Shear deformation theory using logarithmic function for thick circular beams and analytical solution for bi-directional functionally graded circular beams. Composite Structures, 2017, 172, 45-60.	3.1	47
62	Crush dynamics and transient deformations of elastic-plastic Miura-ori core sandwich plates. Thin-Walled Structures, 2017, 115, 311-322.	2.7	52
63	Interdiffusion of small molecules into a glassy polymer film via coarse-grained molecular dynamics simulations. Polymer, 2017, 115, 273-284.	1.8	11
64	Stacking sequence optimization for maximizing the first failure initiation load followed by progressive failure analysis until the ultimate load. Composite Structures, 2017, 180, 1007-1021.	3.1	11
65	Load's temporal characteristics for annulling forced vibrations of linear elastic plates. Mechanics Research Communications, 2017, 85, 5-11.	1.0	1
66	Atomistic to coarse grained simulations of diffusion of small molecules into polymeric matrix. Computational Materials Science, 2017, 138, 448-461.	1.4	7
67	Effect of confinement and interfacial adhesion on peeling of a flexible plate from an elastomeric layer. International Journal of Solids and Structures, 2017, 110-111, 385-403.	1.3	12
68	Stress singularities and transverse stresses near edges of doubly curved laminated shells using TSNDT and stress recovery scheme. European Journal of Mechanics, A/Solids, 2017, 63, 68-83.	2.1	14
69	Effect of Curvature on Penetration Resistance of Polycarbonate Panels. Journal of Applied Mechanics, Transactions ASME, 2016, 83, .	1.1	3
70	Buckling of single-walled carbon nanotubes using two criteria. Journal of Applied Physics, 2016, 119, 245106.	1.1	11
71	Mode-I stress intensity factor in single layer graphene sheets. Computational Materials Science, 2016, 118, 251-258.	1.4	38
72	Debonding of confined elastomeric layer using cohesive zone model. International Journal of Adhesion and Adhesives, 2016, 66, 114-127.	1.4	18

#	Article	IF	CITATIONS
73	Thermal buckling and post-buckling of FGM Timoshenko beams on nonlinear elastic foundation. Journal of Thermal Stresses, 2016, 39, 11-26.	1.1	48
74	Size-dependent free vibrations of electrostatically predeformed functionally graded micro-cantilevers. IOP Conference Series: Materials Science and Engineering, 2015, 87, 012117.	0.3	10
75	Constitutive Relations and Parameter Estimation for Finite Deformations of Viscoelastic Adhesives. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	3
76	Lightweight Metal Cellular Structures Fabricated via 3D Printing of Sand Cast Molds. Advanced Engineering Materials, 2015, 17, 923-932.	1.6	89
77	Correspondence Relations Between Deflection, Buckling Load, and Frequencies of Thin Functionally Graded Material Plates and Those of Corresponding Homogeneous Plates. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	21
78	Finite deformations of full sine-wave StVenant beam due to tangential and normal distributed loads using nonlinear TSNDT. Meccanica, 2015, 50, 355-365.	1.2	10
79	Sensitivity analysis of low-velocity impact response of laminated plates. International Journal of Impact Engineering, 2015, 78, 64-80.	2.4	16
80	Optimization of transparent laminates for specific energy dissipation under low velocity impact using genetic algorithm. Composite Structures, 2015, 124, 29-34.	3.1	8
81	Analysis of behind the armor ballistic trauma. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 45, 11-21.	1.5	51
82	Material tailoring in finite torsional deformations of axially graded Mooney–Rivlin circular cylinder. Mathematics and Mechanics of Solids, 2015, 20, 183-189.	1.5	7
83	Through-the-thickness stress distributions near edges of composite laminates using stress recovery scheme and third order shear and normal deformable theory. Composite Structures, 2015, 131, 397-413.	3.1	13
84	Low Velocity Impact of Flat and Doubly Curved Polycarbonate Panels. Journal of Applied Mechanics, Transactions ASME, 2015, 82, .	1.1	2
85	Hypervelocity impact of a steel microsphere on fused silica sheets. International Journal of Impact Engineering, 2015, 80, 116-132.	2.4	12
86	Localization of buckling modes in plates and laminates. Composite Structures, 2015, 120, 79-89.	3.1	9
87	Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory. Composite Structures, 2015, 119, 67-89.	3.1	224
88	Analysis of cohesive failure in adhesively bonded joints with the SSPH meshless method. International Journal of Adhesion and Adhesives, 2014, 51, 67-80.	1.4	38
89	Delamination in sandwich panels due to local water slamming loads. Journal of Fluids and Structures, 2014, 48, 122-155.	1.5	25
90	In-plane elastic moduli of covalently functionalized single-wall carbon nanotubes. Computational Materials Science, 2014, 83, 349-361.	1.4	11

6

#	Article	IF	CITATIONS
91	A tapered bondline thickness double cantilever beam (DCB) specimen geometry for combinatorial fracture studies of adhesive bonds. International Journal of Adhesion and Adhesives, 2014, 55, 155-160.	1.4	25
92	Vibration mode localization in single- and multi-layered graphene nanoribbons. Computational Materials Science, 2014, 95, 41-52.	1.4	13
93	Elastic moduli of covalently functionalized single layer graphene sheets. Computational Materials Science, 2014, 95, 637-650.	1.4	21
94	Crack propagation in pre-strained single layer graphene sheets. Computational Materials Science, 2014, 84, 238-243.	1.4	24
95	Low speed impact of laminated polymethylmethacrylate/adhesive/polycarbonate plates. Composite Structures, 2014, 116, 193-210.	3.1	15
96	Analysis of adiabatic shear bands in thermo-elasto-viscoplastic materials by using piece-wise discontinuous basis functions. Applied Mathematical Modelling, 2014, 38, 5367-5381.	2.2	8
97	Effect of Covalent Functionalization on Young's Modulus of a Single-Wall Carbon Nanotube. Springer Series in Materials Science, 2014, , 111-134.	0.4	8
98	Analytical solution for free vibrations of moderately thick hybrid piezoelectric laminated plates. Journal of Sound and Vibration, 2013, 332, 5981-5998.	2.1	45
99	Comparison of the performance of SSPH and MLS basis functions for two-dimensional linear elastostatics problems including quasistatic crack propagation. Computational Mechanics, 2013, 51, 19-34.	2.2	22
100	Material tailoring and moduli homogenization for finite twisting deformations of functionally graded Mooney-Rivlin hollow cylinders. Acta Mechanica, 2013, 224, 811-818.	1.1	7
101	Single-edge crack growth in graphene sheets under tension. Computational Materials Science, 2013, 69, 381-388.	1.4	53
102	Analysis of structural changes during plastic deformations of amorphous polyethylene. Polymer, 2013, 54, 819-840.	1.8	14
103	Transient hydroelastic analysis of sandwich beams subjected to slamming in water. Thin-Walled Structures, 2013, 72, 206-216.	2.7	5
104	Optimum Young's Modulus of a Homogeneous Cylinder Energetically Equivalent to a Functionally Graded Cylinder. Journal of Elasticity, 2013, 110, 95-110.	0.9	9
105	Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler–Bernoulli beams. Composite Structures, 2013, 95, 5-9.	3.1	117
106	Finite deformations of curved laminated St. Venant–Kirchhoff beam using layer-wise third order shear and normal deformable beam theory (TSNDT). Composite Structures, 2013, 97, 147-164.	3.1	34
107	Analysis of post-buckling and delamination in laminated composite St. Venant–Kirchhoff beams using CZM and layer-wise TSNDT. Composite Structures, 2013, 105, 369-384.	3.1	21
108	Target finding and obstacle avoidance algorithm for microrobot swarms. , 2012, , .		10

#	Article	IF	CITATIONS
109	Material parameters for pressure-dependent yielding of unidirectional fiber-reinforced polymeric composites. Composites Part B: Engineering, 2012, 43, 2594-2604.	5.9	13
110	Analysis of Adiabatic Shear Bands by Numerical Methods. , 2012, , 173-214.		1
111	Free vibrations of a strain gradient beam by the method of initial values. Acta Mechanica, 2012, 223, 2393-2409.	1.1	29
112	Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates. Composite Structures, 2012, 94, 540-547.	3.1	119
113	Mode localization in composite laminates. Composite Structures, 2012, 94, 2620-2631.	3.1	13
114	Effect of matrix on ballistic performance of soft body armor. Composite Structures, 2012, 94, 2690-2696.	3.1	75
115	Analytical Solution for Radial Deformations of Functionally Graded Isotropic and Incompressible Second-Order Elastic Hollow Spheres. Journal of Elasticity, 2012, 107, 179-197.	0.9	9
116	Antiplane Shear Waves in Two Contacting Ferromagnetic Half Spaces. Journal of Elasticity, 2011, 103, 189-203.	0.9	2
117	Material tailoring for orthotropic elastic rotating disks. Composites Science and Technology, 2011, 71, 406-414.	3.8	22
118	Material tailoring for functionally graded hollow cylinders and spheres. Composites Science and Technology, 2011, 71, 666-673.	3.8	81
119	Analysis of adhesive-bonded single-lap joint with an interfacial crack and a void. International Journal of Adhesion and Adhesives, 2011, 31, 455-465.	1.4	54
120	Local water slamming impact on sandwich composite hulls. Journal of Fluids and Structures, 2011, 27, 523-551.	1.5	59
121	Strain localization in polycarbonates deformed at high strain rates. Journal of Polymer Engineering, 2011, 31, .	0.6	2
122	Coupled Experimental and Computational Analysis of Fracture Path Selection in PMMA Blocks. Conference Proceedings of the Society for Experimental Mechanics, 2011, , 13-23.	0.3	1
123	Changes in internal stress distributions during yielding of square prismatic gold nano-specimens. Acta Materialia, 2010, 58, 3131-3161.	3.8	6
124	Exact Solutions and Material Tailoring for Functionally Graded Hollow Circular Cylinders. Journal of Elasticity, 2010, 99, 179-201.	0.9	63
125	Free vibration of three-layer circular cylindrical shells with functionally graded middle layer. Mechanics Research Communications, 2010, 37, 577-580.	1.0	54
126	Modeling and simulation of high speed sliding. International Journal of Impact Engineering, 2010, 37, 1197-1206.	2.4	9

#	Article	IF	CITATIONS
127	Effect of particulate/matrix debonding on the formation of adiabatic shear bands. International Journal of Mechanical Sciences, 2010, 52, 386-397.	3.6	13
128	Static deformations of functionally graded polar-orthotropic cylinders with elliptical inner and circular outer surfaces. Composites Science and Technology, 2010, 70, 450-457.	3.8	21
129	Indentation of a laminated composite plate with an interlayer rectangular void. Composites Science and Technology, 2010, 70, 1023-1030.	3.8	4
130	Material tailoring and analysis of functionally graded isotropic and incompressible linear elastic hollow cylinders. Composite Structures, 2010, 92, 265-274.	3.1	42
131	Stress analysis and material tailoring in isotropic linear thermoelastic incompressible functionally graded rotating disks of variable thickness. Composite Structures, 2010, 92, 720-729.	3.1	59
132	Analytical solutions for functionally graded incompressible eccentric and non-axisymmetrically loaded circular cylinders. Composite Structures, 2010, 92, 1229-1245.	3.1	19
133	Elastic Properties and Frequencies of Free Vibrations of Single-Layer Graphene Sheets. Journal of Computational and Theoretical Nanoscience, 2010, 7, 2151-2164.	0.4	120
134	Free Vibration of Thermally Pre/Post-Buckled Circular Thin Plates Embedded with Shape Memory Alloy Fibers. Journal of Thermal Stresses, 2010, 33, 79-96.	1.1	26
135	Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration. Computational Materials Science, 2010, 47, 1049-1059.	1.4	100
136	Effective Properties of Carbon Nanotube and Piezoelectric Fiber Reinforced Hybrid Smart Composites. Journal of Applied Mechanics, Transactions ASME, 2009, 76, .	1.1	42
137	Analysis of adiabatic shear bands in heatâ€conducting elastothermoviscoplastic materials by the meshless local Bubnov–Galerkin method. Communications in Numerical Methods in Engineering, 2009, 25, 1019-1040.	1.3	5
138	Symmetric smoothed particle hydrodynamics (SSPH) method and its application to elastic problems. Computational Mechanics, 2009, 43, 321-340.	2.2	86
139	Molecular statics simulations of buckling and yielding of gold nanowires deformed in axial compression. Acta Materialia, 2009, 57, 4921-4932.	3.8	26
140	Inflation and eversion of functionally graded non-linear elastic incompressible circular cylinders. International Journal of Non-Linear Mechanics, 2009, 44, 311-323.	1.4	46
141	Natural frequencies of thick plates made of orthotropic, monoclinic, and hexagonal materials by a meshless method. Journal of Sound and Vibration, 2009, 319, 984-992.	2.1	25
142	Local slamming impact of sandwich composite hulls. International Journal of Solids and Structures, 2009, 46, 2011-2035.	1.3	105
143	Constitutive equations for thermomechanical deformations of glassy polymers. International Journal of Solids and Structures, 2009, 46, 4079-4094.	1.3	53
144	Breakdown of structural models for vibrations of single-wall zigzag carbon nanotubes. Journal of Applied Physics, 2009, 106, .	1.1	23

#	Article	IF	CITATIONS
145	Identification of elastic constants of FCC metals from 2D load-indentation curves. Computational Materials Science, 2009, 45, 511-515.	1.4	0
146	Local and global instabilities in nanosize rectangular prismatic gold specimens. Computational Materials Science, 2009, 46, 960-976.	1.4	3
147	Symmetry breaking, snap-through and pull-in instabilities under dynamic loading of microelectromechanical shallow arches. Smart Materials and Structures, 2009, 18, 115008.	1.8	104
148	Pull-in and snap-through instabilities in transient deformations of microelectromechanical systems. Journal of Micromechanics and Microengineering, 2009, 19, 035008.	1.5	114
149	Analysis of rubberâ€like materials using meshless local Petrov–Galerkin (MLPG) method. Communications in Numerical Methods in Engineering, 2008, 24, 1781-1804.	1.3	5
150	Analysis of thick composite laminates using a higher-order shear and normal deformable plate theory (HOSNDPT) and a meshless method. Composites Part B: Engineering, 2008, 39, 414-427.	5.9	80
151	Modeling damage in polymeric composites. Composites Part B: Engineering, 2008, 39, 66-82.	5.9	56
152	Modified Smoothed Particle Hydrodynamics (MSPH) basis functions for meshless methods, and their application to axisymmetric Taylor impact test. Journal of Computational Physics, 2008, 227, 1962-1981.	1.9	40
153	Vibrations of narrow microbeams predeformed by an electric field. Journal of Sound and Vibration, 2008, 309, 600-612.	2.1	202
154	Vibrations and pull-in instabilities of microelectromechanical von Kármán elliptic plates incorporating the Casimir force. Journal of Sound and Vibration, 2008, 315, 939-960.	2.1	72
155	Instabilities in shear and simple shear deformations of gold crystals. Journal of the Mechanics and Physics of Solids, 2008, 56, 3116-3143.	2.3	12
156	Blast resistance of unidirectional fiber reinforced composites. Composites Part B: Engineering, 2008, 39, 513-536.	5.9	59
157	Effect of frame size, frame type, and clamping pressure on the ballistic performance of soft body armor. Composites Part B: Engineering, 2008, 39, 476-489.	5.9	62
158	Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter. Composite Structures, 2008, 86, 328-343.	3.1	151
159	Reduced-order models for microelectromechanical rectangular and circular plates incorporating the Casimir force. International Journal of Solids and Structures, 2008, 45, 3558-3583.	1.3	160
160	Analytical solution of the contact problem of a rigid indenter and an anisotropic linear elastic layer. International Journal of Solids and Structures, 2008, 45, 5814-5830.	1.3	36
161	Exact solutions for radial deformations of a functionally graded isotropic and incompressible second-order elastic cylinder. International Journal of Non-Linear Mechanics, 2008, 43, 383-398.	1.4	29
162	Two-dimensional stress analysis of functionally graded solids using the MLPG method with radial basis functions. Computational Materials Science, 2008, 41, 467-481.	1.4	33

#	Article	IF	CITATIONS
163	Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes. Computational Materials Science, 2008, 43, 715-723.	1.4	105
164	Pull-In Instability in Electrostatically Actuated MEMS due to Coulomb and Casimir Forces. Computational and Experimental Methods in Structures, 2008, , 329-374.	0.2	4
165	Wall Thickness and Radial Breathing Modes of Single-Walled Carbon Nanotubes. Journal of Applied Mechanics, Transactions ASME, 2008, 75, .	1.1	84
166	Pull-In Instabilities in Functionally Graded Microthermoelectromechanical Systems. Journal of Thermal Stresses, 2008, 31, 1006-1021.	1.1	100
167	Optimal Design of Functionally Graded Incompressible Linear Elastic Cylinders and Spheres. AIAA Journal, 2008, 46, 2050-2057.	1.5	43
168	Smart constrained layer damping of functionally graded shells using vertically/obliquely reinforced 1–3 piezocomposite under a thermal environment. Smart Materials and Structures, 2008, 17, 055007.	1.8	11
169	Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates. Sensors, 2008, 8, 1048-1069.	2.1	99
170	Failure of Dynamically Loaded Thermoelastoviscoplastic Rectangular Plate. AIAA Journal, 2007, 45, 2015-2023.	1.5	1
171	Uniform radial expansion/contraction of carbon nanotubes and their transverse elastic moduli. Modelling and Simulation in Materials Science and Engineering, 2007, 15, 835-844.	0.8	39
172	Review of modeling electrostatically actuated microelectromechanical systems. Smart Materials and Structures, 2007, 16, R23-R31.	1.8	246
173	Vibration of Thermally Post-Buckled Orthotropic Circular Plates. Journal of Thermal Stresses, 2007, 30, 43-57.	1.1	31
174	Effects of Casimir force on pull-in instability in micromembranes. Europhysics Letters, 2007, 77, 20010.	0.7	99
175	Analysis of thick plates by using a higher-order shear and normal deformable plate theory and MLPG method with radial basis functions. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 979-987.	3.4	34
176	Response of fiber reinforced composites to underwater explosive loads. Composites Part B: Engineering, 2007, 38, 448-468.	5.9	67
177	Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions. Composite Structures, 2007, 80, 539-552.	3.1	126
178	Continuum models of multi-walled carbon nanotubes. International Journal of Solids and Structures, 2007, 44, 7577-7596.	1.3	81
179	Instability strain and shear band spacing in simple tensile/compressive deformations of thermoviscoplastic materials. International Journal of Impact Engineering, 2007, 34, 448-463.	2.4	38
180	Damage model for anisotropic materials, and its application to analysis of stability and spallation. International Journal of Impact Engineering, 2007, 34, 1780-1796.	2.4	5

#	Article	IF	CITATIONS
181	Analytical solution for vibration of an incompressible isotropic linear elastic rectangular plate, and frequencies missed in previous solutions. Journal of Sound and Vibration, 2007, 302, 613-620.	2.1	19
182	Vibration of an incompressible isotropic linear elastic rectangular plate with a higher-order shear and normal deformable theory. Journal of Sound and Vibration, 2007, 307, 961-971.	2.1	12
183	Free and Forced Vibrations of a Segmented Bar by a Meshless Local Petrov–Galerkin (MLPG) Formulation. Computational Mechanics, 2007, 41, 473-491.	2.2	26
184	Search algorithm, and simulation of elastodynamic crack propagation by modified smoothed particle hydrodynamics (MSPH) method. Computational Mechanics, 2007, 40, 531-546.	2.2	45
185	SSPH basis functions for meshless methods, and comparison of solutions with strong and weak formulations. Computational Mechanics, 2007, 41, 527-545.	2.2	82
186	Wave propagation in functionally graded materials by modified smoothed particle hydrodynamics (MSPH) method. Journal of Computational Physics, 2007, 222, 374-390.	1.9	73
187	Higher-order shear and normal deformable theory for functionally graded incompressible linear elastic plates. Thin-Walled Structures, 2007, 45, 974-982.	2.7	39
188	Torsion of a Functionally Graded Cylinder. AIAA Journal, 2006, 44, 1363-1365.	1.5	60
189	Electromechanical Model of Electrically Actuated Narrow Microbeams. Journal of Microelectromechanical Systems, 2006, 15, 1175-1189.	1.7	177
190	Capacitance estimate for electrostatically actuated narrow microbeams. Micro and Nano Letters, 2006, 1, 71.	0.6	55
191	Analysis of electrostatic MEMS using meshless local Petrov–Galerkin (MLPG) method. Engineering Analysis With Boundary Elements, 2006, 30, 949-962.	2.0	47
192	Natural frequencies of functionally graded plates by a meshless method. Composite Structures, 2006, 75, 593-600.	3.1	305
193	Shear bands due to heat flux prescribed at boundaries. International Journal of Plasticity, 2006, 22, 1-15.	4.1	25
194	Consideration of microstructural effects in the analysis of adiabatic shear bands in a tungsten heavy alloy. International Journal of Plasticity, 2006, 22, 1858-1878.	4.1	14
195	Buckling of axially compressed thin cylindrical shells with functionally graded middle layer. Thin-Walled Structures, 2006, 44, 1039-1047.	2.7	73
196	Dynamic buckling of thin thermoviscoplastic cylindrical shell under radial impulsive loading. Thin-Walled Structures, 2006, 44, 1109-1117.	2.7	5
197	Shear band spacing in thermoviscoplastic materials. International Journal of Impact Engineering, 2006, 32, 947-967.	2.4	19
198	Determination of effective thermomechanical parameters of a mixture of two elastothermoviscoplastic constituents. International Journal of Plasticity, 2006, 22, 1026-1061.	4.1	58

#	Article	IF	CITATIONS
199	Buckling of multiwalled carbon nanotubes under axial compression. Physical Review B, 2006, 73, .	1.1	135
200	Brittle and Ductile Failure in Thermoviscoplastic Solids under Dynamic Loading. , 2006, , 805-806.		0
201	Design of bidirectional functionally graded plate for optimal natural frequencies. Journal of Sound and Vibration, 2005, 280, 415-424.	2.1	144
202	Natural frequencies of a functionally graded anisotropic rectangular plate. Journal of Sound and Vibration, 2005, 282, 509-516.	2.1	134
203	Natural frequencies of orthotropic, monoclinic and hexagonal plates by a meshless method. Journal of Sound and Vibration, 2005, 285, 734-742.	2.1	13
204	Dynamic buckling of a thin thermoviscoplastic rectangular plate. Thin-Walled Structures, 2005, 43, 273-290.	2.7	20
205	Crack propagation due to brittle and ductile failures in microporous thermoelastoviscoplastic functionally graded materials. Engineering Fracture Mechanics, 2005, 72, 1954-1979.	2.0	20
206	Multimode vibration suppression with passive two-terminal distributed network incorporating piezoceramic transducers. International Journal of Solids and Structures, 2005, 42, 3115-3132.	1.3	35
207	Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method. Composite Structures, 2005, 69, 449-457.	3.1	370
208	Vibrations of thick isotropic plates with higher order shear and normal deformable Plate theories. Computers and Structures, 2005, 83, 934-955.	2.4	48
209	Dynamic buckling of thin cylindrical shells under axial impact. International Journal of Impact Engineering, 2005, 32, 575-592.	2.4	27
210	Second-order solution of Saint-Venant's problem for an elastic bar predeformed in flexure. International Journal of Non-Linear Mechanics, 2005, 40, 411-422.	1.4	17
211	Adiabatic shear banding in plane strain tensile deformations of 11 thermoelastoviscoplastic materials with finite thermal wave speed. International Journal of Plasticity, 2005, 21, 1521-1545.	4.1	43
212	Three-Dimensional transient heat conduction in a functionally graded thick plate with a higher-order plate theory and a meshless local Petrov-Galerkin method. Computational Mechanics, 2005, 35, 214-226.	2.2	68
213	Treloar's Biaxial Tests and Kearsley's Bifurcation in Rubber Sheets. Mathematics and Mechanics of Solids, 2005, 10, 705-713.	1.5	26
214	Instabilities in Biaxially Loaded Rectangular Membranes and Spherical Balloons Made of Compressible Isotropic Hyperelastic Materials. Mathematics and Mechanics of Solids, 2005, 10, 471-485.	1.5	2
215	FAILURE-MODE TRANSITION SPEED IN THREE-DIMENSIONAL TRANSIENT DEFORMATIONS OF A MICROPOROUS HEAT-CONDUCTING THERMOELASTOVISCOPLASTIC PRENOTCHED PLATE. Journal of Thermal Stresses, 2005, 28, 533-562.	1.1	3
216	Mesoscale Analysis of Shear Bands in High Strain Rate Deformations of Tungsten/Nickel-Iron Composites. Journal of Thermal Stresses, 2005, 28, 747-782.	1.1	16

#	Article	IF	CITATIONS
217	Effect of electromechanical coupling on static deformations and natural frequencies. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1079-1093.	1.7	16
218	TRANSIENT THERMOELASTIC DEFORMATIONS OF A THICK FUNCTIONALLY GRADED PLATE. Journal of Thermal Stresses, 2004, 27, 705-740.	1.1	118
219	Simulation of brittle and ductile fracture in an impact loaded prenotched plate. International Journal of Fracture, 2004, 126, 179-203.	1.1	47
220	Static and dynamic fracture toughness of epoxy/alumina composite with submicron inclusions. Journal of Materials Science, 2004, 39, 1437-1440.	1.7	33
221	Modified smoothed particle hydrodynamics method and its application to transient problems. Computational Mechanics, 2004, 34, 137.	2.2	157
222	Analysis of adiabatic shear bands in elasto-thermo-viscoplastic materials by modified smoothed-particle hydrodynamics (MSPH) method. Journal of Computational Physics, 2004, 201, 172-190.	1.9	65
223	Three-dimensional exact solution for the vibration of functionally graded rectangular plates. Journal of Sound and Vibration, 2004, 272, 703-730.	2.1	500
224	Natural frequencies of thick square plates made of orthotropic, trigonal, monoclinic, hexagonal and triclinic materials. Journal of Sound and Vibration, 2004, 270, 1074-1086.	2.1	48
225	Treatment of material discontinuity in two meshless local Petrov-Galerkin (MLPG) formulations of axisymmetric transient heat conduction. International Journal for Numerical Methods in Engineering, 2004, 61, 2461-2479.	1.5	47
226	Analytical solution for the cylindrical bending vibration of piezoelectric composite plates. International Journal of Solids and Structures, 2004, 41, 1625-1643.	1.3	90
227	Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkin method. Composites Part B: Engineering, 2004, 35, 685-697.	5.9	364
228	ADIABATIC SHEAR BANDS IN FUNCTIONALLY GRADED MATERIALS. Journal of Thermal Stresses, 2004, 27, 1101-1123.	1.1	27
229	Macroscopic properties of carbon nanotubes from molecular-mechanics simulations. Physical Review B, 2004, 69, .	1.1	265
230	Analysis of cylindrical bending thermoelastic deformations of functionally graded plates by a meshless local Petrov?Galerkin method. Computational Mechanics, 2004, 33, 263-273.	2.2	49
231	Static Deformations of a Linear Elastic Porous Body Filled with an Inviscid Fluid. Journal of Elasticity, 2003, 72, 99-120.	0.9	16
232	Three-dimensional analysis of transient thermal stresses in functionally graded plates. International Journal of Solids and Structures, 2003, 40, 7181-7196.	1.3	259
233	Missing frequencies in previous exact solutions of free vibrations of simply supported rectangular plates. Journal of Sound and Vibration, 2003, 265, 887-896.	2.1	61
234	Analysis of failure modes in an impact loaded thermoviscoplastic prenotched plate. International Journal of Plasticity, 2003, 19, 139-196.	4.1	13

#	Article	IF	CITATIONS
235	DEFORMATIONS OF AN AXIALLY LOADED THERMOVISCOPLASTIC BAR DUE TO LASER HEATING. Journal of Thermal Stresses, 2003, 26, 701-712.	1.1	7
236	GENERALIZED PLANE STRAIN THERMOPIEZOELECTRIC ANALYSIS OF MULTILAYERED PLATES. Journal of Thermal Stresses, 2003, 26, 353-377.	1.1	33
237	Comparison of Active Constrained Layer Damping by Using Extension and Shear Mode Piezoceramic Actuators. Journal of Intelligent Material Systems and Structures, 2002, 13, 349-367.	1.4	20
238	Exact Solution for Thermoelastic Deformations of Functionally Graded Thick Rectangular Plates. AIAA Journal, 2002, 40, 1421-1433.	1.5	410
239	Higher-Order Piezoelectric Plate Theory Derived from a Three-Dimensional Variational Principle. AIAA Journal, 2002, 40, 91-104.	1.5	173
240	PLANE WAVE SOLUTIONS AND MODAL ANALYSIS IN HIGHER ORDER SHEAR AND NORMAL DEFORMABLE PLATE THEORIES. Journal of Sound and Vibration, 2002, 257, 63-88.	2.1	67
241	Effective properties of a piezocomposite containing shape memory alloy and inert inclusions. Continuum Mechanics and Thermodynamics, 2002, 14, 87-111.	1.4	23
242	Plane-strain deformation of an elastic material compressed in a rough rectangular cavity. International Journal of Engineering Science, 2002, 40, 991-1010.	2.7	9
243	Exact Solution for Rectangular Sandwich Plates with Embedded Piezoelectric Shear Actuators. AIAA Journal, 2001, 39, 1363-1373.	1.5	84
244	Thermal effects on laminated composite shells containing interfacial imperfections. Composite Structures, 2001, 52, 3-11.	3.1	27
245	Analysis of piezoelectric bimorphs and plates with segmented actuators. Thin-Walled Structures, 2001, 39, 23-44.	2.7	50
246	Comparison of results from four linear constitutive relations in isotropic finite elasticity. International Journal of Non-Linear Mechanics, 2001, 36, 421-432.	1.4	45
247	Closure to "The generalized plane strain deformations of thick anisotropic composite laminated plates― International Journal of Solids and Structures, 2001, 38, 483-489.	1.3	7
248	Generalized plane strain thermoelastic deformation of laminated anisotropic thick plates. International Journal of Solids and Structures, 2001, 38, 1395-1414.	1.3	40
249	Title is missing!. International Journal of Fracture, 2001, 110, 47-71.	1.1	20
250	Micromechanical Modeling of a Composite Containing Piezoelectric and Shape Memory Alloy Inclusions. Journal of Intelligent Material Systems and Structures, 2001, 12, 165-182.	1.4	21
251	Coupled extensional and torsional deformations of a piezoelectric cylinder. Smart Materials and Structures, 2001, 10, 300-304.	1.8	13
252	Enhancement of the dynamic buckling load for a plate by using piezoceramic actuators. Smart Materials and Structures, 2001, 10, 925-933.	1.8	41

#	Article	IF	CITATIONS
253	Effective Electroelastic Properties of a Piezocomposite with Viscoelastic and Dielectric Relaxing Matrix. Journal of Intelligent Material Systems and Structures, 2001, 12, 847-866.	1.4	27
254	EXACT CORRESPONDENCE BETWEEN EIGENVALUES OF MEMBRANES AND FUNCTIONALLY GRADED SIMPLY SUPPORTED POLYGONAL PLATES. Journal of Sound and Vibration, 2000, 229, 879-895.	2.1	190
255	The generalized plane strain deformations of thick anisotropic composite laminated plates. International Journal of Solids and Structures, 2000, 37, 715-733.	1.3	61
256	Microstructural effects on shear instability and shear band spacing. Theoretical and Applied Fracture Mechanics, 2000, 34, 155-166.	2.1	9
257	Three-dimensional thermoelastic deformations of a functionally graded elliptic plate. Composites Part B: Engineering, 2000, 31, 97-106.	5.9	219
258	Saint-Venant's problem for a second-order piezoelectric prismatic bar. International Journal of Engineering Science, 2000, 38, 21-45.	2.7	9
259	Title is missing!. International Journal of Fracture, 2000, 101, 99-140.	1.1	35
260	Three-dimensional numerical simulation of the Kalthoff experiment. International Journal of Fracture, 2000, 105, 161-186.	1.1	40
261	Title is missing!. Journal of Elasticity, 2000, 59, 23-50.	0.9	36
262	Cylindrical Bending of Laminated Plates with Distributed and Segmented Piezoelectric Actuators/Sensors. AIAA Journal, 2000, 38, 857-867.	1.5	77
263	Three-Dimensional Analytical Solution for Hybrid Multilayered Piezoelectric Plates. Journal of Applied Mechanics, Transactions ASME, 2000, 67, 558-567.	1.1	100
264	Torsion of a Viscoelastic Cylinder. Journal of Applied Mechanics, Transactions ASME, 2000, 67, 424-427.	1.1	4
265	Effect of material parameters on shear band spacing in work-hardening gradient dependent thermoviscoplastic materials. International Journal of Plasticity, 1999, 15, 551-574.	4.1	15
266	Thermal shock cracking in a metal-particle-reinforced ceramic matrix composite. Engineering Fracture Mechanics, 1999, 62, 339-350.	2.0	24
267	Linear Constitutive Relations in Isotropic Finite Viscoelasticity. Journal of Elasticity, 1999, 55, 73-77.	0.9	15
268	Shear band spacing in gradient-dependent thermoviscoplastic materials. Computational Mechanics, 1999, 23, 8-19.	2.2	24
269	Locations of optimal stress points in higher-order elements. Communications in Numerical Methods in Engineering, 1999, 15, 127-136.	1.3	11
270	Rotational dependence of the superconvergent patch recovery and its remedy for 4-node isoparametric quadrilateral elements. Communications in Numerical Methods in Engineering, 1999, 15, 493-499.	1.3	1

#	Article	IF	CITATIONS
271	Analytical Solution for Rectangular Thick Laminated Plates Subjected to Arbitrary Boundary Conditions. AIAA Journal, 1999, 37, 1464-1473.	1.5	78
272	Exact Eshelby Tensor for a Dynamic Circular Cylindrical Inclusion. Journal of Applied Mechanics, Transactions ASME, 1999, 66, 563-565.	1.1	26
273	Generalized Poynting Effects in Predeformed Prismatic Bars. Journal of Elasticity, 1998, 50, 181-196.	0.9	24
274	Linear Constitutive Relations in Isotropic Finite Elasticity. Journal of Elasticity, 1998, 51, 243-245.	0.9	31
275	Title is missing!. Journal of Elasticity, 1998, 52, 75-90.	0.9	15
276	THERMAL FRACTURE OF CERAMICS WITH TEMPERATURE-DEPENDENT PROPERTIES. Journal of Thermal Stresses, 1998, 21, 157-176.	1.1	13
277	PENETRATION/PERFORATION OF ALUMINUM, STEEL AND TUNGSTEN PLATES BY CERAMIC RODS. Computers and Structures, 1998, 66, 571-583.	2.4	19
278	Crack shielding and material deterioration in damaged materials: an antiplane shear fracture problem. Archive of Applied Mechanics, 1998, 68, 247-258.	1.2	2
279	R-curve and strength behavior of a functionally graded material. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 242, 70-76.	2.6	46
280	Adiabatic shear bands in plane strain deformations of a WHA. International Journal of Plasticity, 1998, 14, 43-60.	4.1	11
281	Adiabatic shear bands in the Taylor impact test for a WHA rod. International Journal of Plasticity, 1998, 14, 841-854.	4.1	27
282	Changes in Frequencies of a Laminated Plate Caused by Embedded Piezoelectric Layers. AIAA Journal, 1997, 35, 1672-1673.	1.5	12
283	Saint-Venant's Problem for Porous Linear Elastic Materials. Journal of Elasticity, 1997, 47, 73-81.	0.9	44
284	Title is missing!. Journal of Elasticity, 1997, 49, 113-127.	0.9	19
285	Adiabatic shear banding in a thick-walled steel tube. Computational Mechanics, 1997, 20, 412-426.	2.2	13
286	Finite dynamic deformations of smart structures. Computational Mechanics, 1997, 20, 427-438.	2.2	64
287	Analysis of failure modes in impulsively loaded pre-notched steel plates. International Journal of Plasticity, 1997, 13, 291-308.	4.1	29
288	The vibration of a rectangular laminated elastic plate with embedded piezoelectric sensors and actuators. Computers and Structures, 1997, 63, 203-216.	2.4	92

#	Article	IF	CITATIONS
289	Development of shear bands during the perforation of a steel plate. Computational Mechanics, 1996, 17, 326-334.	2.2	12
290	STRESS INTENSITY RELAXATION AT THE TIP OF AN EDGE CRACK IN A FUNCTIONALLY GRADED MATERIAL SUBJECTED TO A THERMAL SHOCK. Journal of Thermal Stresses, 1996, 19, 317-339.	1.1	163
291	Effect of defect shape and size on the initiation of adiabatic shear bands. Acta Mechanica, 1996, 116, 239-243.	1.1	9
292	A THEORY OF THERMOVISCOELASTIC DIELECTRICS. Journal of Thermal Stresses, 1996, 19, 419-430.	1.1	7
293	Rolling/Sliding of a Vibrating Elastic Body on an Elastic Substrate. Journal of Tribology, 1996, 118, 147-152.	1.0	3
294	The vibration of a simply supported rectangular elastic plate due to piezoelectric actuators. International Journal of Solids and Structures, 1996, 33, 1597-1618.	1.3	73
295	Some basic fracture mechanics concepts in functionally graded materials. Journal of the Mechanics and Physics of Solids, 1996, 44, 1221-1235.	2.3	304
296	Energy-momentum tensors in nonsimple elastic dielectrics. Journal of Elasticity, 1996, 42, 275-281.	0.9	13
297	Saint-Venant's principle for a helical piezoelectric body. Journal of Elasticity, 1996, 43, 69-79.	0.9	14
298	Modeling of macroscopic response of phase transforming materials under quasi-static loading. Journal of Elasticity, 1996, 44, 145-160.	0.9	5
299	Saint-Venant's principle for linear elastic porous materials. Journal of Elasticity, 1995, 39, 265-271.	0.9	22
300	Saint-Venant's principle in linear piezoelectricity. Journal of Elasticity, 1995, 38, 209-218.	0.9	123
301	Mixed variational principles in non-linear electroelasticity. International Journal of Non-Linear Mechanics, 1995, 30, 719-725.	1.4	75
302	STABILITY OF A PROPAGATING INTERPHASE BOUNDARY IN A THERMOPLASTIC MATERIAL. Journal of Thermal Stresses, 1995, 18, 621-634.	1.1	0
303	FREE VIBRATIONS OF A LINEAR THERMOPIEZOELECTRIC BODY. Journal of Thermal Stresses, 1995, 18, 247-262.	1.1	37
304	Thickness shear vibrations of a circular cylindrical piezoelectric shell. Journal of the Acoustical Society of America, 1995, 97, 309-312.	0.5	15
305	A secondâ€order theory for piezoelectric materials. Journal of the Acoustical Society of America, 1995, 97, 280-288.	0.5	32
306	On the Propagation of a Shear Band in a Steel Tube. Journal of Engineering Materials and Technology, Transactions of the ASME, 1994, 116, 155-161.	0.8	24

#	Article	IF	CITATIONS
307	A theory of electroded thin thermopiezoelectric plates subject to large driving voltages. Journal of Applied Physics, 1994, 76, 5411-5417.	1.1	21
308	Free vibrations of a piezoelectric body. Journal of Elasticity, 1994, 34, 239-254.	0.9	25
309	Effect of kinematic hardening on the initiation and growth of shear bands in plane strain deformations of a thermoviscoplastic solid. Acta Mechanica, 1994, 102, 217-233.	1.1	2
310	On the interaction between two circular voids in a nonlinear elastic solid. Acta Mechanica, 1994, 105, 161-171.	1.1	1
311	Effect of frictional force and nose shape on axisymmetric deformations of a thick thermoviscoplastic target. Acta Mechanica, 1994, 106, 87-105.	1.1	12
312	An adaptive mesh refinement technique for two-dimensional shear band problems. Computational Mechanics, 1993, 12, 255-268.	2.2	12
313	Effect of frictional force on the steady state axisymmetric deformations of a viscoplastic target. Acta Mechanica, 1993, 97, 153-168.	1.1	5
314	Analysis of shear bands in a dynamically loaded viscoplastic cylinder containing two rigid inclusions. Acta Mechanica, 1993, 100, 105-114.	1.1	0
315	Analysis of shear bands in dynamic axisymmetric compression of a thermoviscoplastic cylinder. International Journal of Engineering Science, 1993, 31, 529-547.	2.7	16
316	Consideration of Phase Transformations in the Study of Shear Bands in a Dynamically Loaded Steel Block. Journal of Engineering Materials and Technology, Transactions of the ASME, 1992, 114, 368-377.	0.8	5
317	Analysis of Shear Bands in Simple Shearing Deformations of Nonpolar and Dipolar Viscoplastic Materials. Applied Mechanics Reviews, 1992, 45, S123-S131.	4.5	9
318	An adaptive mesh refinement technique for the analysis of shear bands in plane strain compression of a thermoviscoplastic solid. Computational Mechanics, 1992, 10, 369-379.	2.2	46
319	Analysis of shear banding in twelve materials. International Journal of Plasticity, 1992, 8, 425-452.	4.1	90
320	Effect of initial temperature on the initiation and growth of shear bands in a plain carbon steel. International Journal of Non-Linear Mechanics, 1992, 27, 279-291.	1.4	8
321	Steady state penetration of elastic perfectly plastic targets. Acta Mechanica, 1992, 92, 9-27.	1.1	4
322	Effect of constitutive models on steady state axisymmetric deformations of thermoelastic-viscoplastic targets. International Journal of Impact Engineering, 1992, 12, 209-226.	2.4	10
323	Analysis of Shear Banding in Plane Strain Compression of a Bimetallic Thermally Softening Viscoplastic Body Containing an Elliptical Void. Journal of Engineering Materials and Technology, Transactions of the ASME, 1991, 113, 382-395.	0.8	3
324	Shear band development in a thermally softening viscoplastic body. Computers and Structures, 1991, 39, 459-472.	2.4	10

#	Article	IF	CITATIONS
325	Effect of viscoplastic flow rules on steady state penetration of thermoviscoplastic targets. International Journal of Engineering Science, 1991, 29, 1391-1408.	2.7	12
326	Effect of thermal conductivity on the initiation, growth and bandwidth of adiabatic shear bands. International Journal of Engineering Science, 1991, 29, 949-960.	2.7	62
327	Effect of integration methods on the solution of an adiabatic shear banding problem. International Journal for Numerical Methods in Engineering, 1990, 29, 1639-1652.	1.5	4
328	The interaction among adiabatic shear bands in simple and dipolar materials. International Journal of Engineering Science, 1990, 28, 926-942.	2.7	12
329	Adiabatic shear banding in elastic-viscoplastic nonpolar and dipolar materials. International Journal of Plasticity, 1990, 6, 127-141.	4.1	63
330	Effect of viscoplastic flow rules on the initiation and growth of shear bands at high strain rates. Journal of the Mechanics and Physics of Solids, 1990, 38, 859-874.	2.3	65
331	An adaptive mesh refinement technique for the analysis of adiabatic shear banding. Mechanics Research Communications, 1990, 17, 81-91.	1.0	7
332	Adiabatic Shear Banding in Plane Strain Problems. Journal of Applied Mechanics, Transactions ASME, 1989, 56, 527-534.	1.1	58
333	Adiabatic shear banding in a bimetallic body. Acta Mechanica, 1989, 77, 281-297.	1.1	6
334	Effect of multiple initial imperfections on the initiation and growth of adiabatic shear bands in nonpolar and dipolar materials. International Journal of Engineering Science, 1988, 26, 1177-1187.	2.7	12
335	A comparison of solutions for adiabatic shear banding by forward-difference and Crank-Nicolson methods. Communications in Applied Numerical Methods, 1988, 4, 741-748.	0.5	7
336	Steady state penetration of thermoviscoplastic targets. Computational Mechanics, 1988, 3, 1-12.	2.2	47
337	Effect of Nominal Strain-Rates on the Initiation and Growth of Adiabatic Shear Bands in Steels. Journal of Applied Mechanics, Transactions ASME, 1988, 55, 229-230.	1.1	19
338	Effect of material parameters on the initiation and growth of adiabatic shear bands. International Journal of Solids and Structures, 1987, 23, 1435-1446.	1.3	40
339	The force on a lattice defect in an elastic body. Journal of Elasticity, 1987, 17, 3-8.	0.9	24
340	The initiation and growth of, and the interaction among, adiabatic shear bands in simple and dipolar materials. International Journal of Plasticity, 1987, 3, 75-89.	4.1	83
341	The initiation and growth of adiabatic shear bands. International Journal of Plasticity, 1985, 1, 205-212.	4.1	139
342	Finite deformations of a viscoelastic roll cover contacting a rigid plane surface. Communications in Applied Numerical Methods, 1985, 1, 169-176.	0.5	4

#	Article	IF	CITATIONS
343	Finite plane strain deformations of nonlinear viscoelastic rubber-covered rolls. International Journal for Numerical Methods in Engineering, 1984, 20, 1911-1927.	1.5	20
344	A thermomechanical theory for a porous anisotropic elastic solid with inclusions. Archive for Rational Mechanics and Analysis, 1984, 87, 11-33.	1.1	16
345	Quasistatic indentation of a rubber-covered roll by a rigid roll. International Journal for Numerical Methods in Engineering, 1981, 17, 1823-1833.	1.5	21
346	Finite plane strain deformations of rubberlike materials. International Journal for Numerical Methods in Engineering, 1980, 15, 145-156.	1.5	51
347	Rubber Covered Rolls—The Nonlinear Elastic Problem. Journal of Applied Mechanics, Transactions ASME, 1980, 47, 82-86.	1.1	15
348	Decay of the kinetic and the thermal energy of compressible micropolar fluids. Acta Mechanica, 1978, 29, 47-53.	1.1	0
349	Cold rolling of a laminated composite sheet—A numerical solution. International Journal for Numerical Methods in Engineering, 1978, 12, 429-435.	1.5	2
350	Saint-Venant's Principle for a Helical Spring. Journal of Applied Mechanics, Transactions ASME, 1978, 45, 297-301.	1.1	16
351	Thermodynamics of non-simple elastic materials. Journal of Elasticity, 1976, 6, 451-456.	0.9	20
352	Deformation produced by a simple tensile load in an isotropic elastic body. Journal of Elasticity, 1976, 6, 109-111.	0.9	28
353	On non-classical boundary conditions. Archive for Rational Mechanics and Analysis, 1972, 48, 163-191.	1.1	21
354	Penetration Resistance of Cast Metalâ [~] Ceramic Composite Lattice Structures. Advanced Engineering Materials, 0, , 2100577.	1.6	5