
William Charles Earnshaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5837102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mammalian Caspases: Structure, Activation, Substrates, and Functions During Apoptosis. Annual Review of Biochemistry, 1999, 68, 383-424.	5.0	2,499
2	Induction of Apoptosis by Cancer Chemotherapy. Experimental Cell Research, 2000, 256, 42-49.	1.2	1,101
3	The cellular geography of Aurora kinases. Nature Reviews Molecular Cell Biology, 2003, 4, 842-854.	16.1	1,056
4	Structure and Function in the Nucleus. Science, 1998, 280, 547-553.	6.0	884
5	ldentification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma, 1985, 91, 313-321.	1.0	789
6	Topoisomerase II is a structural component of mitotic chromosome scaffolds Journal of Cell Biology, 1985, 100, 1706-1715.	2.3	748
7	Chromosomal passengers: conducting cell division. Nature Reviews Molecular Cell Biology, 2007, 8, 798-812.	16.1	747
8	The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis. Nature Reviews Molecular Cell Biology, 2012, 13, 789-803.	16.1	737
9	Two Distinct Pathways Leading to Nuclear Apoptosis. Journal of Experimental Medicine, 2000, 192, 571-580.	4.2	665
10	A pathway for mitotic chromosome formation. Science, 2018, 359, .	6.0	574
11	Caspases and caspase inhibitors. Trends in Biochemical Sciences, 1997, 22, 388-393.	3.7	517
12	Chromosomal passengers and the (aurora) ABCs of mitosis. Trends in Cell Biology, 2001, 11, 49-54.	3.6	508
13	Modulation of cell death by Bcl-xL through caspase interaction. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 554-559.	3.3	505
14	Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 9042-9046.	3.3	494
15	Nuclear changes in apoptosis. Current Opinion in Cell Biology, 1995, 7, 337-343.	2.6	490
16	Localization of topoisomerase II in mitotic chromosomes Journal of Cell Biology, 1985, 100, 1716-1725.	2.3	486
17	DNA packaging by the double-stranded DNA bacteriophages. Cell, 1980, 21, 319-331.	13.5	459
18	Essential Roles of Drosophila Inner Centromere Protein (Incenp) and Aurora B in Histone H3 Phosphorylation, Metaphase Chromosome Alignment, Kinetochore Disjunction, and Chromosome Segregation. Journal of Cell Biology, 2001, 153, 865-880.	2.3	442

#	Article	IF	CITATIONS
19	Apoptotic Phosphorylation of Histone H2B Is Mediated by Mammalian Sterile Twenty Kinase. Cell, 2003, 113, 507-517.	13.5	441
20	Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. Journal of Cell Biology, 1987, 104, 817-829.	2.3	430
21	Topoisomerase II: A specific marker for cell proliferation Journal of Cell Biology, 1986, 103, 2569-2581.	2.3	421
22	Differential expression of DNA topoisomerases I and II during the eukaryotic cell cycle Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 1086-1090.	3.3	399
23	Borealin. Journal of Cell Biology, 2004, 166, 179-191.	2.3	388
24	CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell, 1995, 81, 261-268.	13.5	361
25	The Centromere: Chromatin Foundation for the Kinetochore Machinery. Developmental Cell, 2014, 30, 496-508.	3.1	355
26	CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell, 1992, 70, 115-125.	13.5	350
27	The dynamic kinetochore-microtubule interface. Journal of Cell Science, 2004, 117, 5461-5477.	1.2	346
28	Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Current Biology, 1997, 7, 901-904.	1.8	334
29	Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Current Opinion in Cell Biology, 2009, 21, 796-805.	2.6	318
30	Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. Journal of Cell Science, 2003, 116, 2987-2998.	1.2	300
31	Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma, 1989, 98, 1-12.	1.0	299
32	Chromosomal passengers: the four-dimensional regulation of mitotic events. Chromosoma, 2004, 113, 211-222.	1.0	294
33	Essential roles of KIF4 and its binding partner PRC1 in organized central spindle midzone formation. EMBO Journal, 2004, 23, 3237-3248.	3.5	293
34	Formation of Spindle Poles by Dynein/Dynactin-Dependent Transport of Numa. Journal of Cell Biology, 2000, 149, 851-862.	2.3	292
35	INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Current Biology, 2000, 10, 1075-1078.	1.8	286
36	Mutations in pericentrin cause Seckel syndrome with defective ATR-dependent DNA damage signaling. Nature Genetics, 2008, 40, 232-236.	9.4	281

#	Article	IF	CITATIONS
37	DNA arrangement in isometric phage heads. Nature, 1977, 268, 598-602.	13.7	266
38	The Protein Composition of Mitotic Chromosomes Determined Using Multiclassifier Combinatorial Proteomics. Cell, 2010, 142, 810-821.	13.5	266
39	Assembly of nucleosomes: the reaction involving X. laevis nucleoplasmin. Cell, 1980, 21, 373-383.	13.5	265
40	Trashing the genome: the role of nucleases during apoptosis. Nature Reviews Molecular Cell Biology, 2005, 6, 677-688.	16.1	265
41	Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO Journal, 2011, 30, 328-340.	3.5	264
42	Condensin Is Required for Nonhistone Protein Assembly and Structural Integrity of Vertebrate Mitotic Chromosomes. Developmental Cell, 2003, 5, 323-336.	3.1	263
43	ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure Journal of Cell Biology, 1994, 127, 303-318.	2.3	262
44	Scc1/Rad21/Mcd1 Is Required for Sister Chromatid Cohesion and Kinetochore Function in Vertebrate Cells. Developmental Cell, 2001, 1, 759-770.	3.1	255
45	Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. Journal of Cell Science, 2001, 114, 3529-3542.	1.2	252
46	cDNA cloning of human DNA topoisomerase I: catalytic activity of a 67.7-kDa carboxyl-terminal fragment Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 2543-2547.	3.3	248
47	Comparison of Apoptosis in Wild-Type and Fas-Resistant Cells: Chemotherapy-Induced Apoptosis Is Not Dependent on Fas/Fas Ligand Interactions. Blood, 1997, 90, 935-943.	0.6	247
48	CENP-B: a major human centromere protein located beneath the kinetochore Journal of Cell Biology, 1990, 110, 1475-1488.	2.3	245
49	INCENP is required for proper targeting of Survivin to the centromeres and the anaphase spindle during mitosis. Current Biology, 2001, 11, 886-890.	1.8	241
50	Inactivation of a Human Kinetochore by Specific Targeting of Chromatin Modifiers. Developmental Cell, 2008, 14, 507-522.	3.1	239
51	Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma, 1985, 92, 290-296.	1.0	233
52	Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation. EMBO Journal, 2002, 21, 1967-1977.	3.5	233
53	Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cytoskeleton, 2004, 59, 249-263.	4.4	228
54	Chk1 Is Required for Spindle Checkpoint Function. Developmental Cell, 2007, 12, 247-260.	3.1	227

#	Article	IF	CITATIONS
55	Chromatin-associated Protein Phosphatase 1 Regulates Aurora-B and Histone H3 Phosphorylation. Journal of Biological Chemistry, 2001, 276, 26656-26665.	1.6	216
56	An intrinsic S/G ₂ checkpoint enforced by ATR. Science, 2018, 361, 806-810.	6.0	215
57	Assembly of the head of bacteriophage P22: X-ray diffraction from heads, proheads and related structures. Journal of Molecular Biology, 1976, 104, 387-410.	2.0	209
58	Human CLASP1 Is an Outer Kinetochore Component that Regulates Spindle Microtubule Dynamics. Cell, 2003, 113, 891-904.	13.5	199
59	Activation of Multiple Interleukin-1β Converting Enzyme Homologues in Cytosol and Nuclei of HL-60 Cells during Etoposide-induced Apoptosis. Journal of Biological Chemistry, 1997, 272, 7421-7430.	1.6	197
60	Three human chromosomal autoantigens are recognized by sera from patients with anti-centromere antibodies Journal of Clinical Investigation, 1986, 77, 426-430.	3.9	197
61	Condensin and Repo-Man–PP1 co-operate in the regulation of chromosome architecture during mitosis. Nature Cell Biology, 2006, 8, 1133-1142.	4.6	195
62	Chromosomal passengers: Toward an integrated view of mitosis. Chromosoma, 1991, 100, 139-146.	1.0	194
63	A super-resolution map of the vertebrate kinetochore. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10484-10489.	3.3	186
64	INCENP Centromere and Spindle Targeting: Identification of Essential Conserved Motifs and Involvement of Heterochromatin Protein HP1. Journal of Cell Biology, 1998, 143, 1763-1774.	2.3	185
65	Nucleosome assembly. Nature, 1980, 286, 763-767.	13.7	183
66	Mitotic chromatin condensation in vitro using somatic cell extracts and nuclei with variable levels of endogenous topoisomerase II Journal of Cell Biology, 1990, 111, 2839-2850.	2.3	178
67	Centrosome amplification induced by DNA damage occurs during a prolonged G2 phase and involves ATM. EMBO Journal, 2004, 23, 3864-3873.	3.5	176
68	Repo-Man Coordinates Chromosomal Reorganization with Nuclear Envelope Reassembly during Mitotic Exit. Developmental Cell, 2011, 21, 328-342.	3.1	172
69	CENP-A Is Required for Accurate Chromosome Segregation and Sustained Kinetochore Association of BubR1. Molecular and Cellular Biology, 2005, 25, 3967-3981.	1.1	168
70	Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery. ELife, 2014, 3, e01641.	2.8	167
71	Localization of CENP-E in the fibrous corona and outer plate of mammalian kinetochores from prometaphase through anaphase. Chromosoma, 1997, 106, 446-455.	1.0	165
72	Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Experimental Cell Research, 2007, 313, 3635-3644.	1.2	164

#	Article	IF	CITATIONS
73	The hBUB1 and hBUBR1 kinases sequentially assemble onto kinetochores during prophase with hBUBR1 concentrating at the kinetochore plates in mitosis. Chromosoma, 1998, 107, 386-396.	1.0	160
74	Prognostic significance of anticentromere antibodies and anti–topoisomerase i antibodies in Raynaud's disease. A prospective study. Arthritis and Rheumatism, 1991, 34, 68-77.	6.7	159
75	ICE-related proteases in apoptosis. Current Opinion in Genetics and Development, 1996, 6, 50-55.	1.5	158
76	Contrasting roles of condensin I and II in mitotic chromosome formation. Journal of Cell Science, 2012, 125, 1591-604.	1.2	156
77	Mitotic chromosomes are compacted laterally by KIF4 and condensin and axially by topoisomerase IIα. Journal of Cell Biology, 2012, 199, 755-770.	2.3	155
78	Chromosome Engineering Allows the Efficient Isolation of Vertebrate Neocentromeres. Developmental Cell, 2013, 24, 635-648.	3.1	155
79	Characterization of neo-centromeres in marker chromosomes lacking detectable alpha-satellite DNA. Human Molecular Genetics, 1997, 6, 1195-1204.	1.4	151
80	Breaking the HAC Barrier: Histone H3K9 acetyl/methyl balance regulates CENP-A assembly. EMBO Journal, 2012, 31, 2391-2402.	3.5	151
81	A Dominant Mutant of Inner Centromere Protein (INCENP), a Chromosomal Protein, Disrupts Prometaphase Congression and Cytokinesis. Journal of Cell Biology, 1998, 140, 991-1002.	2.3	149
82	DNA topoisomerase IIα interacts with CAD nuclease and is involved in chromatin condensation during apoptotic execution. Current Biology, 2000, 10, 923-S2.	1.8	144
83	Chromosomal Proteins and Cytokinesis: Patterns of Cleavage Furrow Formation and Inner Centromere Protein Positioning in Mitotic Heterokaryons and Mid-anaphase Cells. Journal of Cell Biology, 1997, 136, 1169-1183.	2.3	136
84	Structure of the human centromere at metaphase. Trends in Biochemical Sciences, 1990, 15, 181-185.	3.7	132
85	CENP-I Is Essential for Centromere Function in Vertebrate Cells. Developmental Cell, 2002, 2, 463-476.	3.1	131
86	Condensin Regulates the Stiffness of Vertebrate Centromeres. Molecular Biology of the Cell, 2009, 20, 2371-2380.	0.9	129
87	INCENP and Aurora B Promote Meiotic Sister Chromatid Cohesion through Localization of the Shugoshin MEI-S332 in Drosophila. Developmental Cell, 2006, 11, 57-68.	3.1	124
88	Anti-topoisomerase II recognizes meiotic chromosome cores. Chromosoma, 1989, 98, 317-322.	1.0	123
89	Transition from Caspase-dependent to Caspase-independent Mechanisms at the Onset of Apoptotic Execution. Journal of Cell Biology, 1998, 143, 225-239.	2.3	122
90	Condensin: Architect of mitotic chromosomes. Chromosome Research, 2009, 17, 131-144.	1.0	122

#	Article	IF	CITATIONS
91	MAST/Orbit has a role in microtubule–kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity. Journal of Cell Biology, 2002, 157, 749-760.	2.3	121
92	Condensin I Interacts with the PARP-1-XRCC1 Complex and Functions in DNA Single-Strand Break Repair. Molecular Cell, 2006, 21, 837-848.	4.5	121
93	Comparison of Caspase Activation and Subcellular Localization in HL-60 and K562 Cells Undergoing Etoposide-Induced Apoptosis. Blood, 1997, 90, 4283-4296.	0.6	119
94	Mammalian CLASP1 and CLASP2 Cooperate to Ensure Mitotic Fidelity by Regulating Spindle and Kinetochore Function. Molecular Biology of the Cell, 2006, 17, 4526-4542.	0.9	116
95	Structure of phage P22 coat protein aggregates formed in the absence of the scaffolding protein. Journal of Molecular Biology, 1978, 126, 721-747.	2.0	115
96	Aurora-B Phosphorylation in Vitro Identifies a Residue of Survivin That Is Essential for Its Localization and Binding to Inner Centromere Protein (INCENP) in Vivo. Journal of Biological Chemistry, 2004, 279, 5655-5660.	1.6	115
97	Transmission of a Fully Functional Human Neocentromere through Three Generations. American Journal of Human Genetics, 1999, 64, 1440-1444.	2.6	113
98	The structure and dynamics of ring chromosomes in human neoplastic and non-neoplastic cells. Human Genetics, 1999, 104, 315-325.	1.8	108
99	Human INCENP colocalizes with the Aurora-B/AIRK2 kinase on chromosomes and is overexpressed in tumour cells. Chromosoma, 2001, 110, 65-74.	1.0	104
100	CAD/DFF40 Nuclease Is Dispensable for High Molecular Weight DNA Cleavage and Stage I Chromatin Condensation in Apoptosis. Journal of Biological Chemistry, 2001, 276, 45427-45432.	1.6	102
101	Disruption of centromere assembly during interphase inhibits kinetochore morphogenesis and function in mitosis. Cell, 1991, 66, 1229-1238.	13.5	101
102	Granzyme B/Perforin-Mediated Apoptosis of Jurkat Cells Results in Cleavage of Poly(ADP-ribose) Polymerase to the 89-kDa Apoptotic Fragment and Less Abundant 64-kDa Fragment. Biochemical and Biophysical Research Communications, 1996, 227, 658-665.	1.0	101
103	Histone H4 Lys 20 Monomethylation of the CENP-A Nucleosome Is Essential for Kinetochore Assembly. Developmental Cell, 2014, 29, 740-749.	3.1	101
104	Functional Complementation of a Genetic Deficiency with Human Artificial Chromosomes. American Journal of Human Genetics, 2001, 69, 315-326.	2.6	99
105	Vertebrate cells genetically deficient for Cdc14A or Cdc14B retain DNA damage checkpoint proficiency but are impaired in DNA repair. Journal of Cell Biology, 2010, 189, 631-639.	2.3	99
106	A cellular poison cupboard. Nature, 1999, 397, 387-389.	13.7	97
107	The Chromosomal Passenger Complex Activates Polo Kinase at Centromeres. PLoS Biology, 2012, 10, e1001250.	2.6	97
108	Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function. Journal of Cell Science, 2012, 125, 411-421.	1.2	97

#	Article	IF	CITATIONS
109	3D-CLEM Reveals that a Major Portion of Mitotic Chromosomes Is Not Chromatin. Molecular Cell, 2016, 64, 790-802.	4.5	96
110	Caspase-mediated Cleavage of DNA Topoisomerase I at Unconventional Sites during Apoptosis. Journal of Biological Chemistry, 1999, 274, 4335-4340.	1.6	94
111	Co-localization of centromere activity, proteins and topoisomerase II within a subdomain of the major human X α-satellite array. EMBO Journal, 2002, 21, 5269-5280.	3.5	94
112	Deconstructing Survivin: comprehensive genetic analysis of Survivin function by conditional knockout in a vertebrate cell line. Journal of Cell Biology, 2008, 183, 279-296.	2.3	94
113	The SMC proteins and the coming of age of the chromosome scaffold hypothesis. BioEssays, 1995, 17, 759-766.	1.2	92
114	Aurora B Overexpression Causes Aneuploidy and p21 ^{Cip1} Repression during Tumor Development. Molecular and Cellular Biology, 2015, 35, 3566-3578.	1.1	92
115	Untangling the role of DNA topoisomerase II in mitotic chromosome structure and function. BioEssays, 1997, 19, 97-99.	1.2	89
116	Apoptosis: lessons from in vitro systems. Trends in Cell Biology, 1995, 5, 217-220.	3.6	87
117	Further evidence that CENP-C is a necessary component of active centromeres: studies of a dic(X; 15) with simultaneous immunofluorescence and FISH. Human Molecular Genetics, 1995, 4, 289-294.	1.4	87
118	The Chromosomal Passenger Complex: One for All and All for One. Cell, 2007, 131, 230-231.	13.5	87
119	Role of nonhistone proteins in the chromosomal events of mitosis. FASEB Journal, 1994, 8, 947-956.	0.2	84
120	Kinetochore localisation of the DNA damage response component 53BP1 during mitosis. Journal of Cell Science, 2002, 115, 71-79.	1.2	80
121	Comparison of Paclitaxel-, 5-Fluoro-2′-deoxyuridine-, and Epidermal Growth Factor (EGF)-induced Apoptosis. Journal of Biological Chemistry, 1999, 274, 15927-15936.	1.6	79
122	KAT7/HBO1/MYST2 Regulates CENP-A Chromatin Assembly by Antagonizing Suv39h1-Mediated Centromere Inactivation. Developmental Cell, 2016, 37, 413-427.	3.1	78
123	Sgt1 is required for human kinetochore assembly. EMBO Reports, 2004, 5, 626-631.	2.0	76
124	Apoptosis-associated caspase activation assays. Methods, 2008, 44, 262-272.	1.9	76
125	Hierarchical Inactivation of a Synthetic Human Kinetochore by a Chromatin Modifier. Molecular Biology of the Cell, 2009, 20, 4194-4204.	0.9	75
126	INCENP–aurora B interactions modulate kinase activity and chromosome passenger complex localization. Journal of Cell Biology, 2009, 187, 637-653.	2.3	75

#	Article	IF	CITATIONS
127	Cleavage Furrows Formed between Centrosomes Lacking an Intervening Spindle and Chromosomes Contain Microtubule Bundles, INCENP, and CHO1 but Not CENP-E. Molecular Biology of the Cell, 1999, 10, 297-311.	0.9	74
128	Dynamic relocalization of the chromosomal passenger complex proteins inner centromere protein (INCENP) and aurora-B kinase during male mouse meiosis. Journal of Cell Science, 2003, 116, 961-974.	1.2	74
129	Efficiency of de Novo Centromere Formation in Human Artificial Chromosomes. Genomics, 2002, 79, 297-304.	1.3	72
130	Comparison of Apoptosis in Wild-Type and Fas-Resistant Cells: Chemotherapy-Induced Apoptosis Is Not Dependent on Fas/Fas Ligand Interactions. Blood, 1997, 90, 935-943.	0.6	72
131	RNAi analysis reveals an unexpected role for topoisomerase II in chromosome arm congression to a metaphase plate. Journal of Cell Science, 2003, 116, 4715-4726.	1.2	71
132	Epigenetic engineering reveals a balance between histone modifications and transcription in kinetochore maintenance. Nature Communications, 2016, 7, 13334.	5.8	71
133	INCENP Binds Directly to Tubulin and Requires Dynamic Microtubules to Target to the Cleavage Furrow. Experimental Cell Research, 2001, 262, 122-127.	1.2	70
134	Condensin I associates with structural and gene regulatory regions in vertebrate chromosomes. Nature Communications, 2013, 4, 2537.	5.8	70
135	CrmA/SPI-2 Inhibition of an Endogenous ICE-related Protease Responsible for Lamin A Cleavage and Apoptotic Nuclear Fragmentation. Journal of Biological Chemistry, 1996, 271, 32487-32490.	1.6	68
136	Analysis of Scc1â€deficient cells defines a key metaphase role of vertebrate cohesin in linking sister kinetochores. EMBO Reports, 2004, 5, 167-171.	2.0	68
137	Human artificial chromosome (HAC) vector with a conditional centromere for correction of genetic deficiencies in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20048-20053.	3.3	67
138	CENP-C binds the alpha-satellite DNA in vivo at specific centromere domains. Journal of Cell Science, 2002, 115, 2317-2327.	1.2	67
139	Lack of Correlation between Caspase Activation and Caspase Activity Assays in Paclitaxel-treated MCF-7 Breast Cancer Cells. Journal of Biological Chemistry, 2002, 277, 804-815.	1.6	64
140	Characterization of Caspase Processing and Activation in HL-60 Cell Cytosol Under Cell-free Conditions. Journal of Biological Chemistry, 1999, 274, 22635-22645.	1.6	63
141	SUMOylation modulates the function of Aurora-B kinase. Journal of Cell Science, 2010, 123, 2823-2833.	1.2	63
142	A new generation of human artificial chromosomes for functional genomics and gene therapy. Cellular and Molecular Life Sciences, 2013, 70, 1135-1148.	2.4	63
143	A DHODH inhibitor increases p53 synthesis and enhances tumor cell killing by p53 degradation blockage. Nature Communications, 2018, 9, 1107.	5.8	63
144	Two Interlinked Bistable Switches Govern Mitotic Control in Mammalian Cells. Current Biology, 2018, 28, 3824-3832.e6.	1.8	62

#	Article	IF	CITATIONS
145	Mitotic chromosome formation and the condensin paradox. Experimental Cell Research, 2004, 296, 35-42.	1.2	61
146	Proteomic analysis of human metaphase chromosomes reveals topoisomerase II alpha as an Aurora B substrate. Nucleic Acids Research, 2002, 30, 5318-5327.	6.5	60
147	Dual roles of Incenp crucial to the assembly of the acentrosomal metaphase spindle in female meiosis. Development (Cambridge), 2008, 135, 3239-3246.	1.2	59
148	Human Artificial Chromosome with a Conditional Centromere for Gene Delivery and Gene Expression. DNA Research, 2010, 17, 293-301.	1.5	59
149	Mitotic chromosome structure. BioEssays, 1988, 9, 147-150.	1.2	58
150	CENP-C and CENP-I are key connecting factors for kinetochore and CENP-A assembly. Journal of Cell Science, 2015, 128, 4572-87.	1.2	58
151	Human artificial chromosome-based gene delivery vectors for biomedicine and biotechnology. Expert Opinion on Drug Delivery, 2014, 11, 517-535.	2.4	57
152	Ki-67 and the Chromosome Periphery Compartment in Mitosis. Trends in Cell Biology, 2017, 27, 906-916.	3.6	57
153	The Inner Centromere Protein (INCENP) Coil Is a Single α-Helix (SAH) Domain That Binds Directly to Microtubules and Is Important for Chromosome Passenger Complex (CPC) Localization and Function in Mitosis. Journal of Biological Chemistry, 2015, 290, 21460-21472.	1.6	56
154	Mitotic post-translational modifications of histones promote chromatin compaction <i>in vitro</i> . Open Biology, 2017, 7, 170076.	1.5	56
155	Silver staining the chromosome scaffold. Chromosoma, 1984, 89, 186-192.	1.0	55
156	Novel components of human mitotic chromosomes identified by proteomic analysis of the chromosome scaffold fraction. Chromosoma, 2005, 113, 385-397.	1.0	55
157	Mitotic chromosomes. Seminars in Cell and Developmental Biology, 2021, 117, 7-29.	2.3	54
158	Molecular and Genetic Analysis of Condensin Function in Vertebrate Cells. Molecular Biology of the Cell, 2008, 19, 3070-3079.	0.9	53
159	ICAD/DFF Regulator of Apoptotic Nuclease Is Nuclear. Experimental Cell Research, 1998, 243, 453-459.	1.2	52
160	Differential Localization of ICAD-L and ICAD-S in Cells Due to Removal of a C-Terminal NLS from ICAD-L by Alternative Splicing. Experimental Cell Research, 2000, 255, 314-320.	1.2	51
161	Molecular basis for Cdk1â€regulated timing of Mis18 complex assembly and CENPâ€A deposition. EMBO Reports, 2017, 18, 894-905.	2.0	51
162	Detection of DNA Cleavage in Apoptotic Cells. Methods in Enzymology, 2000, 322, 3-15.	0.4	50

#	Article	IF	CITATIONS
163	Phosphorylated Forms of Activated Caspases Are Present in Cytosol From HL-60 Cells During Etoposide-Induced Apoptosis. Blood, 1998, 92, 3042-3049.	0.6	48
164	Organization of Synthetic Alphoid DNA Array in Human Artificial Chromosome (HAC) with a Conditional Centromere. ACS Synthetic Biology, 2012, 1, 590-601.	1.9	48
165	Three-dimensional topology of the SMC2/SMC4 subcomplex from chicken condensin I revealed by cross-linking and molecular modelling. Open Biology, 2015, 5, 150005.	1.5	46
166	Discovering centromere proteins: from cold white hands to the A, B, C of CENPs. Nature Reviews Molecular Cell Biology, 2015, 16, 443-449.	16.1	46
167	Rapid degradation of condensins and 3D-EM reveal chromatin volume is uncoupled from chromosome architecture in mitosis. Journal of Cell Science, 2018, 131, .	1.2	46
168	Centromere and kinetochore structure. Current Opinion in Cell Biology, 1992, 4, 86-93.	2.6	45
169	Use of molecular cloning methods to map the distribution of epitopes on topoisomerase I (Scl-70) recognized by sera of scleroderma patients. Arthritis and Rheumatism, 1990, 33, 1501-1511.	6.7	44
170	Survival and Proliferation of Cells Expressing Caspase-uncleavable Poly(ADP-ribose) Polymerase in Response to Death-inducing DNA Damage by an Alkylating Agent. Journal of Biological Chemistry, 1999, 274, 37097-37104.	1.6	43
171	Super-resolution fluorescence microscopy as a tool to study the nanoscale organization of chromosomes. Current Opinion in Chemical Biology, 2011, 15, 838-844.	2.8	43
172	TD-60 links RalA GTPase function to the CPC in mitosis. Nature Communications, 2015, 6, 7678.	5.8	43
173	Replication of alpha-satellite DNA arrays in endogenous human centromeric regions and in human artificial chromosome. Nucleic Acids Research, 2014, 42, 11502-11516.	6.5	42
174	Whole-proteome genetic analysis of dependencies in assembly of a vertebrate kinetochore. Journal of Cell Biology, 2015, 211, 1141-1156.	2.3	42
175	Autoantibodies to topoisomerase I (Scl-70): Analysis by gel diffusion, immunoblot, and enzyme-linked immunosorbent assay. Clinical Immunology and Immunopathology, 1990, 57, 399-410.	2.1	41
176	Centromeric inactivation in a dicentric human Y;21 translocation chromosome. Chromosoma, 1997, 106, 199-206.	1.0	40
177	Building mitotic chromosomes. Current Opinion in Cell Biology, 2011, 23, 114-121.	2.6	40
178	HACking the centromere chromatin code: insights from human artificial chromosomes. Chromosome Research, 2012, 20, 505-519.	1.0	40
179	The igg, igm, and iga isotypes of anti-topoisomerase i and anticentromere autoantibodies. Arthritis and Rheumatism, 1990, 33, 724-727.	6.7	38
180	Reverse genetics of essential genes in tissue-culture cells: â€~dead cells talking'. Trends in Cell Biology, 2002. 12. 281-287.	3.6	38

#	Article	IF	CITATIONS
181	Caspase-7 Gene Disruption Reveals an Involvement of the Enzyme during the Early Stages of Apoptosis. Journal of Biological Chemistry, 2004, 279, 1030-1039.	1.6	38
182	Inhibition of ICE-Related Proteases (Caspases) and Nuclear Apoptosis by Phenylarsine Oxide. Experimental Cell Research, 1997, 231, 123-131.	1.2	37
183	Dissecting mitosis by RNAi inDrosophila tissue culture cells. Biological Procedures Online, 2003, 5, 153-161.	1.4	37
184	Structural studies of bacteriophage lambda heads and proheads by small angle X-ray diffraction. Journal of Molecular Biology, 1979, 134, 575-594.	2.0	36
185	<scp>HP</scp> 1α targets the chromosomal passenger complex for activation at heterochromatin before mitotic entry. EMBO Journal, 2018, 37, .	3.5	36
186	Human autoantibody to topoisomerase II. Experimental Cell Research, 1989, 180, 409-418.	1.2	34
187	A new assay for measuring chromosome instability (CIN) and identification of drugs that elevate CIN in cancer cells. BMC Cancer, 2013, 13, 252.	1.1	34
188	The Dawn of Aurora Kinase Research: From Fly Genetics to the Clinic. Frontiers in Cell and Developmental Biology, 2015, 3, 73.	1.8	34
189	Borealin–nucleosome interaction secures chromosome association of the chromosomal passenger complex. Journal of Cell Biology, 2019, 218, 3912-3925.	2.3	34
190	Common Fragile Sites Are Characterized by Faulty Condensin Loading after Replication Stress. Cell Reports, 2020, 32, 108177.	2.9	33
191	The intrinsically disorderly story of Ki-67. Open Biology, 2021, 11, 210120.	1.5	33
192	Large scale chromosome structure and organization. Current Opinion in Structural Biology, 1991, 1, 237-244.	2.6	32
193	Longitudinal Study of Anticentromere and Antitopoisomerase-I Isotypes. Clinical Immunology and Immunopathology, 1995, 74, 257-270.	2.1	32
194	Specific Interaction between Human Kinetochore Protein CENP-C and a Nucleolar Transcriptional Regulator. Journal of Biological Chemistry, 1996, 271, 18767-18774.	1.6	32
195	In vivo functional dissection of human inner kinetochore protein CENP-C. Journal of Structural Biology, 2002, 140, 39-48.	1.3	32
196	A portable BRCA1-HAC (human artificial chromosome) module for analysis of BRCA1 tumor suppressor function. Nucleic Acids Research, 2014, 42, e164-e164.	6.5	32
197	CENP-B creates alternative epigenetic chromatin states permissive for CENP-A or heterochromatin assembly. Journal of Cell Science, 2020, 133, .	1.2	32
198	Anticentromere Autoantibodies. Arthritis and Rheumatism, 1994, 37, 248-252.	6.7	31

#	Article	IF	CITATIONS
199	The size of the bacteriophage T4 head in solution with comments about the dimension of virus particles as visualized by electron microscopy. Journal of Molecular Biology, 1978, 122, 247-253.	2.0	30
200	Proteins of the inner and outer centromere of mitotic chromosomes. Genome, 1989, 31, 541-552.	0.9	30
201	Epigenetic engineering shows that a human centromere resists silencing mediated by H3K27me3/K9me3. Molecular Biology of the Cell, 2016, 27, 177-196.	0.9	30
202	Vascular smooth muscle cell polyploidization involves changes in chromosome passenger proteins and an endomitotic cell cycle. Experimental Cell Research, 2005, 305, 277-291.	1.2	29
203	Repo-Man-PP1. Nucleus, 2012, 3, 138-142.	0.6	29
204	CENP-V is required for centromere organization, chromosome alignment and cytokinesis. EMBO Journal, 2008, 27, 2510-2522.	3.5	27
205	Comparison of Caspase Activation and Subcellular Localization in HL-60 and K562 Cells Undergoing Etoposide-Induced Apoptosis. Blood, 1997, 90, 4283-4296.	0.6	27
206	p150 , a Conserved Nuclear Phosphoprotein That Contains Multiple Tetratricopeptide Repeats and Binds Specifically to SH2 Domains. Journal of Biological Chemistry, 1996, 271, 6952-6962.	1.6	26
207	How Do Kinetochores CLASP Dynamic Microtubules?. Cell Cycle, 2003, 2, 511-514.	1.3	26
208	Auxin-induced Rapid Degradation of Inhibitor of Caspase-activated DNase (ICAD) Induces Apoptotic DNA Fragmentation, Caspase Activation, and Cell Death. Journal of Biological Chemistry, 2014, 289, 31617-31623.	1.6	26
209	Genetic and epigenetic regulation of centromeres: a look at HAC formation. Chromosome Research, 2015, 23, 87-103.	1.0	26
210	Human Artificial Chromosome with Regulated Centromere: A Tool for Genome and Cancer Studies. ACS Synthetic Biology, 2018, 7, 1974-1989.	1.9	26
211	Development of a novel HAC-based "gain of signal―quantitative assay for measuring chromosome instability (CIN) in cancer cells. Oncotarget, 2016, 7, 14841-14856.	0.8	25
212	Gradient of Increasing Aurora B Kinase Activity Is Required for Cells to Execute Mitosis. Journal of Biological Chemistry, 2010, 285, 40163-40170.	1.6	23
213	Protecting a transgene expression from the HAC-based vector by different chromatin insulators. Cellular and Molecular Life Sciences, 2013, 70, 3723-3737.	2.4	23
214	Targeting the INCENP IN-box–Aurora B interaction to inhibit CPC activity <i>in vivo</i> . Open Biology, 2014, 4, 140163.	1.5	23
215	A promoter-hijack strategy for conditional shutdown of multiply spliced essential cell cycle genes. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2457-2462.	3.3	22
216	Mio depletion links mTOR regulation to Aurora A and Plk1 activation at mitotic centrosomes. Journal of Cell Biology, 2015, 210, 45-62.	2.3	22

#	Article	IF	CITATIONS
217	Mps1 Phosphorylates Its N-Terminal Extension to Relieve Autoinhibition and Activate the Spindle Assembly Checkpoint. Current Biology, 2018, 28, 872-883.e5.	1.8	22
218	A neocentromere in the DAZ region of the human Y chromosome. Chromosoma, 2000, 109, 318-327.	1.0	21
219	INCENP loss from an inactive centromere correlates with the loss of sister chromatid cohesion. Chromosoma, 2001, 110, 393-401.	1.0	21
220	Auxin/AID versus conventional knockouts: distinguishing the roles of CENP-T/W in mitotic kinetochore assembly and stability. Open Biology, 2016, 6, 150230.	1.5	21
221	De novo formation and epigenetic maintenance of centromere chromatin. Current Opinion in Cell Biology, 2019, 58, 15-25.	2.6	21
222	Proteomics Analysis with a Nano Random Forest Approach Reveals Novel Functional Interactions Regulated by SMC Complexes on Mitotic Chromosomes. Molecular and Cellular Proteomics, 2016, 15, 2802-2818.	2.5	20
223	Using human artificial chromosomes to study centromere assembly and function. Chromosoma, 2017, 126, 559-575.	1.0	20
224	Systematic Analysis of Compounds Specifically Targeting Telomeres and Telomerase for Clinical Implications in Cancer Therapy. Cancer Research, 2018, 78, 6282-6296.	0.4	20
225	Nap1 regulates proper CENP-B binding to nucleosomes. Nucleic Acids Research, 2013, 41, 2869-2880.	6.5	19
226	Method to Assemble Genomic DNA Fragments or Genes on Human Artificial Chromosome with Regulated Kinetochore Using a Multi-Integrase System. ACS Synthetic Biology, 2018, 7, 63-74.	1.9	18
227	Mitosis. BioEssays, 1994, 16, 639-643.	1.2	17
228	Drosophila Incenp is required for cytokinesis and asymmetric cell division during development of the nervous system. Journal of Cell Science, 2006, 119, 1144-1153.	1.2	17
229	Re-engineering an alphoidtetO-HAC-based vector to enable high-throughput analyses of gene function. Nucleic Acids Research, 2013, 41, e107-e107.	6.5	17
230	Generation of a conditionally self-eliminating HAC gene delivery vector through incorporation of a tTAVP64 expression cassette. Nucleic Acids Research, 2015, 43, e57-e57.	6.5	17
231	Acetylation of core histones in response to HDAC inhibitors is diminished in mitotic HeLa cells. Experimental Cell Research, 2010, 316, 2123-2135.	1.2	16
232	Neocentromeres. Current Biology, 2014, 24, R946-R947.	1.8	16
233	Generation of a Synthetic Human Chromosome with Two Centromeric Domains for Advanced Epigenetic Engineering Studies. ACS Synthetic Biology, 2018, 7, 1116-1130.	1.9	16
234	A novel assay to screen siRNA libraries identifies protein kinases required for chromosome transmission. Genome Research, 2019, 29, 1719-1732.	2.4	16

#	Article	IF	CITATIONS
235	In vitro BioID: mapping the CENP-A microenvironment with high temporal and spatial resolution. Molecular Biology of the Cell, 2019, 30, 1314-1325.	0.9	16
236	Seh1 targets GATOR2 and Nup153 to mitotic chromosomes. Journal of Cell Science, 2018, 131, .	1.2	15
237	H3K9me3 maintenance on a Human Artificial Chromosome is required for segregation but not centromere epigenetic memory. Journal of Cell Science, 2020, 133, .	1.2	15
238	Autoantibodies against the chromosomal passenger protein INCENP found in a patient with Graham Little-Piccardi-Lassueur syndrome. Journal of Autoimmune Diseases, 2007, 4, 1.	1.0	14
239	Polo kinase regulates the localization and activity of the chromosomal passenger complex in meiosis and mitosis in <i>Drosophila melanogaster</i> . Open Biology, 2014, 4, 140162.	1.5	14
240	Stepwise unfolding supports a subunit model for vertebrate kinetochores. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3133-3138.	3.3	14
241	Isotype analysis of the anti–CENP-B anticentromere autoantibody: Evidence for restricted clonality. Arthritis and Rheumatism, 1989, 32, 1315-1318.	6.7	13
242	Death Receptor-induced Apoptosis Reveals a Novel Interplay between the Chromosomal Passenger Complex and CENP-C during Interphase. Molecular Biology of the Cell, 2007, 18, 1337-1347.	0.9	13
243	Phosphorylated Forms of Activated Caspases Are Present in Cytosol From HL-60 Cells During Etoposide-Induced Apoptosis. Blood, 1998, 92, 3042-3049.	0.6	13
244	DArk bleaching of rhodopsin by organic mercurial. FEBS Letters, 1973, 34, 137-139.	1.3	12
245	Genetic Analysis of the Short Splice Variant of the Inhibitor of Caspase-activated DNase (ICAD-S) in Chicken DT40 Cells. Journal of Biological Chemistry, 2007, 282, 27374-27382.	1.6	12
246	Nano Random Forests to mine protein complexes and their relationships in quantitative proteomics data. Molecular Biology of the Cell, 2017, 28, 673-680.	0.9	12
247	Shugoshin: a centromeric guardian senses tension. BioEssays, 2005, 27, 588-591.	1.2	11
248	PREditOR: a synthetic biology approach to removing heterochromatin from cells. Chromosome Research, 2016, 24, 495-509.	1.0	11
249	Reed-Sternberg Cells Form by Abscission Failure in the Presence of Functional Aurora B Kinase. PLoS ONE, 2015, 10, e0124629.	1.1	11
250	Disruption of CENP antigen function perturbs dynein anchoring to the mitotic kinetochore. Chromosoma, 1996, 104, 551-560.	1.0	10
251	Two differentially spliced forms of topoisomerase $Il\hat{1}$ and $\hat{1}^2$ mRNAs are conserved between birds and humans. Gene, 2000, 258, 183-192.	1.0	10
252	INCENP at the kinase crossroads. Nature Cell Biology, 2006, 8, 110-111.	4.6	10

#	Article	IF	CITATIONS
253	Mapping the invisible chromatin transactions of prophase chromosome remodeling. Molecular Cell, 2022, 82, 696-708.e4.	4.5	10
254	Synthesis of Novel Caspase Inhibitors for Characterization of the Active Caspase Proteome in Vitro and in Vivo. Journal of Medicinal Chemistry, 2006, 49, 7636-7645.	2.9	9
255	CENP-32 is required to maintain centrosomal dominance in bipolar spindle assembly. Molecular Biology of the Cell, 2015, 26, 1225-1237.	0.9	9
256	Purification of the Death Substrate Poly(ADP-ribose) Polymerase. Analytical Biochemistry, 1997, 249, 106-108.	1.1	8
257	Chapter 12 Identification and analysis of caspase substrates: Proteolytic Cleavage of poly(ADP-rib) Tj ETQq1 1 0	.784314 r	gBT ₈ /Overlock
258	CELL BIOLOGY: Keeping Survivin Nimble at Centromeres in Mitosis. Science, 2005, 310, 1443-1444.	6.0	8
259	Analysis of Caspase Activation During Apoptosis. Current Protocols in Cell Biology, 2001, 11, Unit 18.2.	2.3	7
260	DNA content of a functioning chicken kinetochore. Chromosome Research, 2014, 22, 7-13.	1.0	7
261	Chromokinesin KIF4A teams up with stathmin 1 to regulate abscission in a SUMO-dependent manner. Journal of Cell Science, 2020, 133, .	1.2	7
262	Effects of Full-Length Borealin on the Composition and Proteinâ^'Protein Interaction Activity of a Binary Chromosomal Passenger Complex. Biochemistry, 2009, 48, 1156-1161.	1.2	6
263	Analysis of Complex DNA Rearrangements during Early Stages of HAC Formation. ACS Synthetic Biology, 2020, 9, 3267-3287.	1.9	6
264	Structure of the mammalian centromere. , 1993, , 13-29.		6
265	Idiotypic Analysis of Human Anti-Topoisomerase I Autoantibodies. Autoimmunity, 1991, 10, 41-48.	1.2	5
266	Idiotypic Analysis of Human Anticentromere Autoantibodies. Autoimmunity, 1991, 9, 131-140.	1.2	5
267	CENP-A and the CENP nomenclature: response to Talbert and Henikoff. Trends in Genetics, 2013, 29, 500-502.	2.9	5
268	Deducing Protein Function by Forensic Integrative Cell Biology. PLoS Biology, 2013, 11, e1001742.	2.6	5
269	APC/CCdh1 is required for the termination of chromosomal passenger complex activity upon mitotic exit. Journal of Cell Science, 2020, 133, .	1.2	4
270	Chromosomal passengers. Current Biology, 2001, 11, R683.	1.8	3

#	Article	IF	CITATIONS
271	A perfect funeral with no corpse. Journal of Cell Biology, 2003, 160, 989-990.	2.3	3
272	Panspecies Small-Molecule Disruptors of Heterochromatin-Mediated Transcriptional Gene Silencing. Molecular and Cellular Biology, 2015, 35, 662-674.	1.1	3
273	Isolation of mitotic chromosomes from vertebrate cells and characterization of their proteome by mass spectrometry. Methods in Cell Biology, 2018, 144, 329-348.	0.5	3
274	Plk1-dependent cell cycle-independent furrowing triggered by phosphomimetic mutations of the INCENP STD motif. Journal of Cell Science, 2019, 132, .	1.2	3
275	Use of Mass Spectrometry to Study the Centromere and Kinetochore. Progress in Molecular and Subcellular Biology, 2017, 56, 3-27.	0.9	3
276	Headâ€ŧoâ€ŧail cyclization of side chainâ€protected linear peptides to recapitulate geneticallyâ€encoded cyclized peptides. Peptide Science, 2022, 114, .	1.0	3
277	Combination of CENP-B Box Positive and Negative Synthetic Alpha Satellite Repeats Improves De Novo Human Artificial Chromosome Formation. Cells, 2022, 11, 1378.	1.8	3
278	In Vitro Systems for the Study of Apoptosis. Advances in Pharmacology, 1997, 41, 89-106.	1.2	2
279	Terpyridine platinum compounds induce telomere dysfunction and chromosome instability in cancer cells. Oncotarget, 2021, 12, 1444-1456.	0.8	2
280	Role of caspases in apoptotic execution. Biology of the Cell, 1999, 91, 541-542.	0.7	1
281	Chromosome segregation and aneuploidy: introducing a new series in Trends in Cell Biology. Trends in Cell Biology, 2005, 15, 229-230.	3.6	1
282	Use of DT40 conditional-knockout cell lines to study chromosomal passenger protein function. Biochemical Society Transactions, 2010, 38, 1655-1659.	1.6	1
283	INCENP–aurora B interactions modulate kinase activity and chromosome passenger complex localization. Journal of Cell Biology, 2010, 188, 611-611.	2.3	1
284	William R. Brinkley: A giant in biomedical research and public policy. Journal of Cell Biology, 2021, 220,	2.3	1
285	Mitotic Chromosome Structure: An Update, December 1984. , 1985, , 55-75.		1
286	Methods Used to Study Protease Activation During Apoptosis. Frontiers in Neuroscience, 1998, , .	0.0	1
287	The incenps: Chromosomal proteins with an essential cytoskeletal role during mitosis. Proceedings Annual Meeting Electron Microscopy Society of America, 1993, 51, 78-79.	0.0	0
288	Disruption of CENP antigen function perturbs dynein anchoring to the mitotic kinetochore. Chromosoma, 1996, 104, 551-560.	1.0	0