Hong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5836682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adjusting Sensitivity and Linearity of the Wearable Pressure Sensors by an Arbitrary Microâ€Protuberance Structure of Polyvinylidene Fluoride/Reduced Graphene Oxide Dielectric Films. Advanced Engineering Materials, 2021, 23, 2100326.	1.6	8
2	Lightweight, Superelastic Boron Nitride/Polydimethylsiloxane Foam as Air Dielectric Substitute for Multifunctional Capacitive Sensor Applications. Advanced Functional Materials, 2020, 30, 1909604.	7.8	117
3	Imaging the defect distribution in 2D hexagonal boron nitride by tracing photogenerated electron dynamics. Journal Physics D: Applied Physics, 2020, 53, 405106.	1.3	5
4	Versatile and scalable chemical vapor deposition of vertically aligned MoTe2 on reusable Mo foils. Nano Research, 2020, 13, 2371-2377.	5.8	5
5	Synthesis of Atomically Thin 1Tâ€TaSe ₂ with a Strongly Enhanced Chargeâ€Densityâ€Wave Order. Advanced Functional Materials, 2020, 30, 2001903.	7.8	15
6	Elastic Properties of 2D Ultrathin Tungsten Nitride Crystals Grown by Chemical Vapor Deposition. Advanced Functional Materials, 2019, 29, 1902663.	7.8	37
7	A library of atomically thin metal chalcogenides. Nature, 2018, 556, 355-359.	13.7	1,225
8	Largeâ€Area Atomic Layers of the Chargeâ€Đensityâ€Wave Conductor TiSe ₂ . Advanced Materials, 2018, 30, 1704382.	11.1	60
9	Engineering of High-Density Thin-Layer Graphite Foam-Based Composite Architectures with Superior Compressibility and Excellent Electromagnetic Interference Shielding Performance. ACS Applied Materials & Interfaces, 2018, 10, 41707-41716.	4.0	55
10	Smoothening of wrinkles in CVD-grown hexagonal boron nitride films. Nanoscale, 2018, 10, 16243-16251.	2.8	15
11	Silica-modified SnO2-graphene "slime―for self-enhanced li-ion battery anode. Nano Energy, 2017, 34, 449-455.	8.2	62
12	Valley Pseudospin with a Widely Tunable Bandgap in Doped Honeycomb BN Monolayer. Nano Letters, 2017, 17, 2079-2087.	4.5	37
13	Programmable high crystallinity carbon patterns. 2D Materials, 2017, 4, 025011.	2.0	2
14	High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nature Communications, 2017, 8, 394.	5.8	290
15	MoS ₂ /TiO ₂ Edgeâ€On Heterostructure for Efficient Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1600464.	10.2	264
16	Periodic Organic–Inorganic Halide Perovskite Microplatelet Arrays on Silicon Substrates for Roomâ€īemperature Lasing. Advanced Science, 2016, 3, 1600137.	5.6	121
17	Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films. Science Advances, 2016, 2, e1600209.	4.7	67
18	Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nature Communications, 2016, 7, 12357	5.8	637

HONG WANG

#	Article	IF	CITATIONS
19	Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light–Matter Interactions. Advanced Materials, 2015, 27, 7800-7808.	11.1	109
20	Band Engineering for Novel Twoâ€Ðimensional Atomic Layers. Small, 2015, 11, 1868-1884.	5.2	96
21	Lateral homoepitaxial growth of graphene. CrystEngComm, 2014, 16, 2593.	1.3	10
22	Two-dimensional heterostructures: fabrication, characterization, and application. Nanoscale, 2014, 6, 12250-12272.	2.8	323
23	Pt/3D-graphene/FTO electrodes: Electrochemical preparation and their enhanced electrocatalytic activity. International Journal of Hydrogen Energy, 2014, 39, 15063-15071.	3.8	24
24	Controllable Synthesis of Concave Nanocubes, Right Bipyramids, and 5-Fold Twinned Nanorods of Palladium and Their Enhanced Electrocatalytic Performance. Journal of Physical Chemistry C, 2013, 117, 14289-14294.	1.5	41
25	Depressed scattering across grain boundaries in single crystal graphene. Applied Physics Letters, 2012, 101, 172107.	1.5	5
26	Energy transfer from a single nitrogen-vacancy center in nanodiamond to a graphene monolayer. Applied Physics Letters, 2012, 101, .	1.5	26
27	Controllable Synthesis of Submillimeter Single-Crystal Monolayer Graphene Domains on Copper Foils by Suppressing Nucleation, Journal of the American Chemical Society, 2012, 134, 3627-3630.	6.6	347