
Ping Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5836572/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enzyme-like Fe-N5 single atom catalyst for simultaneous electrochemical detection of dopamine and uric acid. Journal of Electroanalytical Chemistry, 2022, 904, 115956.	1.9	17
2	High-Entropy Oxide for Highly Efficient Luminol–Dissolved Oxygen Electrochemiluminescence and Biosensing Applications. Analytical Chemistry, 2022, 94, 2958-2965.	3.2	22
3	Magic-sized CdSe nanoclusters for efficient visible-light-driven hydrogen evolution. Nano Research, 2022, 15, 3106-3113.	5.8	16
4	Plasmon-Boosted Fe, Co Dual Single-Atom Catalysts for Ultrasensitive Luminol-Dissolved O ₂ Electrochemiluminescence Detection of Prostate-Specific Antigen. Analytical Chemistry, 2022, 94, 9758-9765.	3.2	35
5	Synthesis of Lead-Free Cs ₂ AgBiX ₆ (X = Cl, Br, I) Double Perovskite Nanoplatelets and Their Application in CO ₂ Photocatalytic Reduction. Nano Letters, 2021, 21, 1620-1627.	4.5	140
6	Two-Dimensional-Plasmon-Boosted Iron Single-Atom Electrochemiluminescence for the Ultrasensitive Detection of Dopamine, Hemin, and Mercury. Analytical Chemistry, 2021, 93, 9949-9957.	3.2	42
7	Plasmon-Boosted Cu-Doped TiO ₂ Oxygen Vacancy-Rich Luminol Electrochemiluminescence for Highly Sensitive Detection of Alkaline Phosphatase. Analytical Chemistry, 2021, 93, 15183-15191.	3.2	25
8	Colloidal Semiconductor Quantum Dot–Based Multicomponent Artificial System for Hydrogen Photogeneration. , 2020, , 347-377.		0
9	Stereoselective Câ^'C Oxidative Coupling Reactions Photocatalyzed by Zwitterionic Ligand Capped CsPbBr ₃ Perovskite Quantum Dots. Angewandte Chemie, 2020, 132, 22752-22758.	1.6	16
10	Stereoselective Câ^'C Oxidative Coupling Reactions Photocatalyzed by Zwitterionic Ligand Capped CsPbBr ₃ Perovskite Quantum Dots. Angewandte Chemie - International Edition, 2020, 59, 22563-22569.	7.2	73
11	Oriented bacteriorhodopsin/polyaniline hybrid bio-nanofilms as photo-assisted electrodes for high performance supercapacitors. Journal of Materials Chemistry A, 2020, 8, 8268-8272.	5.2	16
12	Effects of Illumination and Ferroelectric Field on Nanoscale Al:ZnO Films: Implications for Nonvolatile Multistage Storage and Photosensor Devices. ACS Applied Nano Materials, 2020, 3, 6054-6060.	2.4	1
13	Enhancing Photothermal Effect and Stability of Plasmonic Pd/Agâ€Nanosheet by Nanoassembly for Efficient Lightâ€Driven Catalytic Organic Hydrogenation. ChemistrySelect, 2019, 4, 13173-13181.	0.7	4
14	Pd/Ag nanosheet as a plasmonic sensing platform for sensitive assessment of hydrogen evolution reaction in colloid solutions. Nano Research, 2018, 11, 2093-2103.	5.8	13
15	Plasmonics Yields Efficient Electron Transport via Assembly of Shell-Insulated Au Nanoparticles. IScience, 2018, 8, 213-221.	1.9	27
16	Controlled Decoration of Divalent Nickel onto CdS/CdSe Core/Shell Quantum Dots to Boost Visibleâ€Lightâ€Induced Hydrogen Generation in Water. ChemPlusChem, 2018, 83, 1088-1096.	1.3	3
17	Boosting Electrocatalytic Oxygen Evolution Performance of Ultrathin Co/Ni-MOF Nanosheets via Plasmon-Induced Hot Carriers. ACS Applied Materials & Interfaces, 2018, 10, 37095-37102.	4.0	67
18	Combining the post synthesis ligand-assisted technique and SILAR method to assemble the quantum dots onto the oxide semiconductor photoelectrodes and its applications for solar cells. Journal of Alloys and Compounds, 2018, 765, 324-334.	2.8	6

PING WANG

#	Article	IF	CITATIONS
19	Plasmon-driven water splitting enhancement on plasmonic metal–insulator–semiconductor hetero-nanostructures: unraveling the crucial role of interfacial engineering. Nanoscale, 2018, 10, 14290-14297.	2.8	25
20	Photoelectrical properties of CdS/CdSe core/shell QDs modified anatase TiO ₂ nanowires and their application for solar cells. Physical Chemistry Chemical Physics, 2017, 19, 15724-15733.	1.3	24
21	Shell Thickness Engineering Significantly Boosts the Photocatalytic H ₂ Evolution Efficiency of CdS/CdSe Core/Shell Quantum Dots. ACS Applied Materials & Interfaces, 2017, 9, 35712-35720.	4.0	48
22	Long-Range Plasmon Field and Plasmoelectric Effect on Catalysis Revealed by Shell-Thickness-Tunable Pinhole-Free Au@SiO ₂ Core–Shell Nanoparticles: A Case Study of <i>p</i> -Nitrophenol Reduction. ACS Catalysis, 2017, 7, 5391-5398.	5.5	73
23	Enhanced photovoltaic performance of dye-sensitized solar cells using a new photoelectrode material: upconversion YbF ₃ -Ho/TiO ₂ nanoheterostructures. Nanoscale, 2016, 8, 4173-4180.	2.8	56
24	Bacteriorhodopsin/Ag Nanoparticle-Based Hybrid Nano-Bio Electrocatalyst for Efficient and Robust H ₂ Evolution from Water. Journal of the American Chemical Society, 2015, 137, 2840-2843.	6.6	59
25	The important role of surface ligand on CdSe/CdS core/shell nanocrystals in affecting the efficiency of H ₂ photogeneration from water. Nanoscale, 2015, 7, 5767-5775.	2.8	75
26	Graphene Oxide-Supported Ag Nanoplates as LSPR Tunable and Reproducible Substrates for SERS Applications with Optimized Sensitivity. ACS Applied Materials & Interfaces, 2015, 7, 18038-18045.	4.0	65
27	The facile surface chemical modification of a single glass nanopore and its use in the nonenzymatic detection of uric acid. Chemical Communications, 2015, 51, 1914-1917.	2.2	25
28	Lightâ€Ðriven, Membraneless, Hydrogen Peroxide Based Fuel Cells. Advanced Energy Materials, 2015, 5, 1400424.	10.2	40
29	Significantly Enhancing Supercapacitive Performance of Nitrogen-doped Graphene Nanosheet Electrodes by Phosphoric Acid Activation. ACS Applied Materials & Interfaces, 2014, 6, 1563-1568.	4.0	57
30	High-Efficiency Plasmon-Enhanced and Graphene-Supported Semiconductor/Metal Core–Satellite Hetero-Nanocrystal Photocatalysts for Visible-Light Dye Photodegradation and H ₂ Production from Water. ACS Applied Materials & Interfaces, 2014, 6, 19905-19913.	4.0	33
31	Efficient visible light-driven H ₂ production in water by CdS/CdSe core/shell nanocrystals and an ordinary nickel–sulfur complex. Nanoscale, 2014, 6, 13470-13475.	2.8	41
32	Facile synthesis of a free-standing Ag@AgCl film for a high performance photocatalyst and photodetector. Chemical Communications, 2013, 49, 4953.	2.2	50
33	Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Energy and Environmental Science, 2013, 6, 1185.	15.6	970
34	Effect of BiVO ₄ Crystalline Phases on the Photoinduced Carriers Behavior and Photocatalytic Activity. Journal of Physical Chemistry C, 2012, 116, 2425-2430.	1.5	245
35	Shape Transformation and Visible Region Plasmonic Modulation of Silver Nanoplates by Graphene Oxide. Small, 2012, 8, 3438-3442.	5.2	11
36	The dependence of photocatalytic activity and photoinduced self-stability of photosensitive AgI nanoparticles. Dalton Transactions, 2012, 41, 10405.	1.6	87

PING WANG

#	Article	IF	CITATIONS
37	Progress in graphene-based photoactive nanocomposites as a promising class of photocatalyst. Nanoscale, 2012, 4, 5814.	2.8	143
38	Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Research, 2012, 5, 135-144.	5.8	108
39	Superparamagnetic Plasmonic Nanohybrids: Shape-Controlled Synthesis, TEM-Induced Structure Evolution, and Efficient Sunlight-Driven Inactivation of Bacteria. ACS Nano, 2011, 5, 8562-8570.	7.3	68
40	Synthesis of reduced graphene oxide-anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties. Nanoscale, 2011, 3, 1640.	2.8	170
41	Facile solvothermal synthesis of cube-like Ag@AgCl: a highly efficient visible light photocatalyst. Nanoscale, 2011, 3, 2931.	2.8	191
42	Dual-functional Au–Fe3O4 dumbbell nanoparticles for sensitive and selective turn-on fluorescent detection of cyanide based on the inner filter effect. Chemical Communications, 2011, 47, 8268.	2.2	76
43	Facile synthesis of two-dimensional graphene/SnO2/Pt ternary hybrid nanomaterials and their catalytic properties. Nanoscale, 2011, 3, 4376.	2.8	73
44	Aqueous-phase synthesis of Ag-TiO2-reduced graphene oxide and Pt-TiO2-reduced graphene oxide hybrid nanostructures and their catalytic properties. Nano Research, 2011, 4, 1153-1162.	5.8	63
45	Hydrothermal synthesis and photoelectric properties of BiVO4 with different morphologies: An efficient visible-light photocatalyst. Applied Surface Science, 2011, 257, 7758-7762.	3.1	87
46	Synthesis of highly efficient C-doped TiO2 photocatalyst and its photo-generated charge-transfer properties. Journal of Colloid and Interface Science, 2011, 354, 175-180.	5.0	123
47	Size- and photoelectric characteristics-dependent formaldehyde sensitivity of ZnO irradiated with UV light. Sensors and Actuators B: Chemical, 2010, 148, 66-73.	4.0	55
48	One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaic properties. Nano Research, 2010, 3, 794-799.	5.8	177
49	Facile synthesis of TiO2(B) crystallites/nanopores structure: A highly efficient photocatalyst. Journal of Colloid and Interface Science, 2010, 350, 417-420.	5.0	7
50	One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets. Chemical Communications, 2010, 46, 7148.	2.2	183
51	Synthesis and Plasmonâ€Induced Chargeâ€Transfer Properties of Monodisperse Goldâ€Đoped Titania Microspheres. Chemistry - A European Journal, 2009, 15, 4366-4372.	1.7	100
52	Synthesis and Studies of the Visibleâ€Light Photocatalytic Properties of Nearâ€Monodisperse Biâ€Doped TiO ₂ Nanospheres. Chemistry - A European Journal, 2009, 15, 12521-12527.	1.7	112
53	Ultraviolet-assisted gas sensing: A potential formaldehyde detection approach at room temperature based on zinc oxide nanorods. Sensors and Actuators B: Chemical, 2009, 136, 80-85.	4.0	136
54	The enhancement of oxygen sensitivity of ZnO macropore film by functionalizing with azo pigment. Photochemical and Photobiological Sciences, 2009, 8, 875.	1.6	6

PING WANG

#	Article	IF	CITATIONS
55	Light induced enhancing gas sensitivity of copper-doped zinc oxide at room temperature. Sensors and Actuators B: Chemical, 2008, 131, 660-664.	4.0	70
56	Anomalous photoconductivity of cobalt-doped zinc oxide nanobelts in air. Chemical Physics Letters, 2008, 456, 231-235.	1.2	43
57	Preparation of monodisperse Ag/Anatase TiO2 core–shell nanoparticles. Materials Chemistry and Physics, 2008, 109, 181-183.	2.0	18
58	Water-Assisted Synthesis of Anatase TiO ₂ Nanocrystals:  Mechanism and Sensing Properties to Oxygen at Room Temperature. Journal of Physical Chemistry C, 2008, 112, 6648-6652.	1.5	41
59	Photovoltaic properties of a ZnO nanorod array affected by ethanol and liquid-crystalline porphyrin. Nanotechnology, 2008, 19, 245706.	1.3	41
60	Size- and Orientation-Dependent Photovoltaic Properties of ZnO Nanorods. Journal of Physical Chemistry C, 2007, 111, 17136-17145.	1.5	109
61	A facile solution-phase synthesis of high quality water-soluble anatase TiO2 nanocrystals. Journal of Colloid and Interface Science, 2007, 314, 337-340.	5.0	39
62	Microporous Metal–Organic Framework Constructed from Heptanuclear Zinc Carboxylate Secondary Building Units. Chemistry - A European Journal, 2006, 12, 3754-3758.	1.7	159
63	A New Highly Selective H2Sensor Based on TiO2/PtOâ^'Pt Dual-Layer Films. Chemistry of Materials, 2002, 14, 3953-3957.	3.2	96
64	Plasmonics Yields Surprisingly Efficient Electron Transport Via Assembly of Shell-Insulated Au Nanoparticles. SSRN Electronic Journal, 0, , .	0.4	0