
Mirian Casco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5836294/publications.pdf Version: 2024-02-01

MIDIAN CASCO

#	Article	IF	CITATIONS
1	Non-porous organic crystals and their interaction with guest molecules from the gas phase. Adsorption, 2020, 26, 1323-1333.	1.4	3
2	Experimental Evidence of Confined Methane Hydrate in Hydrophilic and Hydrophobic Model Carbons. Journal of Physical Chemistry C, 2019, 123, 24071-24079.	1.5	52
3	On the origin of mesopore collapse in functionalized porous carbons. Carbon, 2019, 149, 743-749.	5.4	14
4	Mechanochemical synthesis of N-doped porous carbon at room temperature. Nanoscale, 2019, 11, 4712-4718.	2.8	47
5	Nanocasting in ball mills – combining ultra-hydrophilicity and ordered mesoporosity in carbon materials. Journal of Materials Chemistry A, 2018, 6, 859-865.	5.2	29
6	Synthesis of carbon monoliths with a tailored hierarchical pore structure for selective CO2 capture. Journal of CO2 Utilization, 2018, 26, 36-44.	3.3	29
7	Methane Hydrate in Confined Spaces: An Alternative Storage System. ChemPhysChem, 2018, 19, 1298-1314.	1.0	59
8	A sol–gel monolithic metal–organic framework with enhanced methane uptake. Nature Materials, 2018, 17, 174-179.	13.3	386
9	Activated nanocarbons produced by microwave-assisted hydrothermal carbonization of Amazonian fruit waste for methane storage. Materials Chemistry and Physics, 2018, 216, 42-46.	2.0	31
10	Mechanochemical synthesis of porous carbon at room temperature with a highly ordered sp2 microstructure. Carbon, 2018, 139, 325-333.	5.4	36
11	Unusual flexibility of mesophase pitch-derived carbon materials: An approach to the synthesis of graphene. Carbon, 2017, 115, 539-545.	5.4	31
12	Understanding ZIFâ€8 Performance upon Gas Adsorption by Means of Inelastic Neutron Scattering. ChemistrySelect, 2017, 2, 2750-2753.	0.7	21
13	Influence of the oxygen-containing surface functional groups in the methane hydrate nucleation and growth in nanoporous carbon. Carbon, 2017, 123, 299-301.	5.4	34
14	Toward a molecular design of porous carbon materials. Materials Today, 2017, 20, 592-610.	8.3	202
15	HKUST-1@ACM hybrids for adsorption applications: A systematic study of the synthesis conditions. Microporous and Mesoporous Materials, 2017, 237, 74-81.	2.2	15
16	Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons. Physical Chemistry Chemical Physics, 2016, 18, 20607-20614.	1.3	73
17	Highâ€Performance of Gas Hydrates in Confined Nanospace for Reversible CH ₄ /CO ₂ Storage. Chemistry - A European Journal, 2016, 22, 10028-10035.	1.7	19
18	Oxidative Dehydrogenation of Ethylbenzene Over Poly(furfuryl alcohol)-Derived CMK-1 Carbon Replica. Catalysis Letters, 2016, 146, 1231-1241.	1.4	7

MIRIAN CASCO

#	Article	IF	CITATIONS
19	Sulfonated porous carbon catalysts for biodiesel production: Clear effect of the carbon particle size on the catalyst synthesis and properties. Fuel Processing Technology, 2016, 149, 209-217.	3.7	52
20	Influence of the Amide Groups in the CO ₂ /N ₂ Selectivity of a Series of Isoreticular, Interpenetrated Metal–Organic Frameworks. Crystal Growth and Design, 2016, 16, 6016-6023.	1.4	73
21	Successful application of a commercial cationic surfactant mixture (benzalkonium chloride) as porosity stabilizer in porous carbons fabrication. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 449-456.	2.3	6
22	Paving the way for methane hydrate formation on metal–organic frameworks (MOFs). Chemical Science, 2016, 7, 3658-3666.	3.7	103
23	Very high methane uptake on activated carbons prepared from mesophase pitch: A compromise between microporosity and bulk density. Carbon, 2015, 93, 11-21.	5.4	52
24	High-Pressure Methane Storage in Porous Materials: Are Carbon Materials in the Pole Position?. Chemistry of Materials, 2015, 27, 959-964.	3.2	178
25	CO2 adsorption on crystalline graphitic nanostructures. Journal of CO2 Utilization, 2014, 5, 60-65.	3.3	17
26	Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure. Carbon, 2014, 67, 230-235.	5.4	187
27	Diffusionâ€Barrierâ€Free Porous Carbon Monoliths as a New Form of Activated Carbon. ChemSusChem, 2012, 5, 2271-2277.	3.6	8