Ashley Shade

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5836274/publications.pdf

Version: 2024-02-01

87723 79541 10,294 71 38 citations h-index papers

g-index 104 104 104 13844 docs citations times ranked citing authors all docs

73

#	Article	IF	CITATIONS
1	A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 2017, 551, 457-463.	13.7	1,942
2	Fundamentals of Microbial Community Resistance and Resilience. Frontiers in Microbiology, 2012, 3, 417.	1.5	1,131
3	Beyond the Venn diagram: the hunt for a core microbiome. Environmental Microbiology, 2012, 14, 4-12.	1.8	940
4	Conditionally Rare Taxa Disproportionately Contribute to Temporal Changes in Microbial Diversity. MBio, 2014, 5, e01371-14.	1.8	549
5	Diversity is the question, not the answer. ISME Journal, 2017, 11, 1-6.	4.4	358
6	Controls on soil microbial community stability under climate change. Frontiers in Microbiology, 2013, 4, 265.	1.5	353
7	Ecological patterns of seed microbiome diversity, transmission, and assembly. Current Opinion in Microbiology, 2017, 37, 15-22.	2.3	331
8	A meta-analysis of changes in bacterial and archaeal communities with time. ISME Journal, 2013, 7, 1493-1506.	4.4	322
9	Meeting Report: The Terabase Metagenomics Workshop and the Vision of an Earth Microbiome Project. Standards in Genomic Sciences, 2010, 3, 243-248.	1.5	228
10	Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME Journal, 2016, 10, 1589-1601.	4.4	226
11	Unexpected Diversity during Community Succession in the Apple Flower Microbiome. MBio, 2013, 4, .	1.8	210
12	Lake microbial communities are resilient after a whole-ecosystem disturbance. ISME Journal, 2012, 6, 2153-2167.	4.4	198
13	Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nature Communications, 2019, 10, 4135.	5.8	182
14	Culturing captures members of the soil rare biosphere. Environmental Microbiology, 2012, 14, 2247-2252.	1.8	174
15	The underâ€ice microbiome of seasonally frozen lakes. Limnology and Oceanography, 2013, 58, 1998-2012.	1.6	173
16	The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany, 2014, 92, 253-266.	0.5	173
17	Interannual dynamics and phenology of bacterial communities in a eutrophic lake. Limnology and Oceanography, 2007, 52, 487-494.	1.6	167
18	Abundance-occupancy distributions to prioritize plant core microbiome membership. Current Opinion in Microbiology, 2019, 49, 50-58.	2.3	136

#	Article	IF	Citations
19	Resistance, resilience and recovery: aquatic bacterial dynamics after water column disturbance. Environmental Microbiology, 2011, 13, 2752-2767.	1.8	127
20	Temporal patterns of rarity provide a more complete view of microbial diversity. Trends in Microbiology, 2015, 23, 335-340.	3 . 5	124
21	The influence of habitat heterogeneity on freshwater bacterial community composition and dynamics. Environmental Microbiology, 2008, 10, 1057-1067.	1.8	120
22	Macroecology to Unite All Life, Large and Small. Trends in Ecology and Evolution, 2018, 33, 731-744.	4.2	118
23	Divergent extremes but convergent recovery of bacterial and archaeal soil communities to an ongoing subterranean coal mine fire. ISME Journal, 2017, 11, 1447-1459.	4.4	108
24	Characterizing microbial communities through space and time. Current Opinion in Biotechnology, 2012, 23, 431-436.	3.3	98
25	Assembly of seed-associated microbial communities within and across successive plant generations. Plant and Soil, 2018, 422, 67-79.	1.8	91
26	Trait-based community assembly and succession of the infant gut microbiome. Nature Communications, 2019, 10, 512.	5.8	88
27	Bridging the gap between micro - and macro-scale perspectives on the role of microbial communities in global change ecology. Plant and Soil, 2006, 289, 59-70.	1.8	86
28	Bacterial Community Composition and Dynamics Spanning Five Years in Freshwater Bog Lakes. MSphere, 2017, 2, .	1.3	84
29	Effects of Short-Term Warming and Altered Precipitation on Soil Microbial Communities in Alpine Grassland of the Tibetan Plateau. Frontiers in Microbiology, 2016, 7, 1032.	1.5	81
30	Persistent microbiome members in the common bean rhizosphere: an integrated analysis of space, time, and plant genotype. ISME Journal, 2021, 15, 2708-2722.	4.4	76
31	Typhoons initiate predictable change in aquatic bacterial communities. Limnology and Oceanography, 2008, 53, 1319-1326.	1.6	73
32	Our microbial selves: what ecology can teach us. EMBO Reports, 2011, 12, 775-784.	2.0	71
33	Microbial metabolites in the marine carbon cycle. Nature Microbiology, 2022, 7, 508-523.	5.9	71
34	A global survey of arsenic-related genes in soil microbiomes. BMC Biology, 2019, 17, 45.	1.7	70
35	A Synthetic Community System for Probing Microbial Interactions Driven by Exometabolites. MSystems, 2017, 2, .	1.7	61
36	Comparison of Primer Sets for Use in Automated Ribosomal Intergenic Spacer Analysis of Aquatic Bacterial Communities: an Ecological Perspective. Applied and Environmental Microbiology, 2007, 73, 659-662.	1.4	56

#	Article	IF	CITATIONS
37	Trait-based patterns of microbial dynamics in dormancy potential and heterotrophic strategy: case studies of resource-based and post-press succession. ISME Journal, 2018, 12, 2575-2581.	4.4	50
38	Differential bacterial dynamics promote emergent community robustness to lake mixing: an epilimnion to hypolimnion transplant experiment. Environmental Microbiology, 2010, 12, 455-466.	1.8	44
39	16S rRNA/rRNA Gene Ratios and Cell Activity Staining Reveal Consistent Patterns of Microbial Activity in Plant-Associated Soil. MSystems, 2019, 4, .	1.7	44
40	When, where and how does microbial community composition matter?. Frontiers in Microbiology, 2014, 5, 497.	1.5	43
41	Temporal dynamics of bacterial communities during seed development and maturation. FEMS Microbiology Ecology, 2020, 96, .	1.3	43
42	Ecological selection for small microbial genomes along a temperate-to-thermal soil gradient. Nature Microbiology, 2019, 4, 55-61.	5.9	42
43	Community structure explains antibiotic resistance gene dynamics over a temperature gradient in soil. FEMS Microbiology Ecology, 2018, 94, .	1.3	40
44	Lifestyles of rarity: understanding heterotrophic strategies to inform the ecology of the microbial rare biosphere. Aquatic Microbial Ecology, 2016, 78, 51-63.	0.9	39
45	Streptomycin Application Has No Detectable Effect on Bacterial Community Structure in Apple Orchard Soil. Applied and Environmental Microbiology, 2013, 79, 6617-6625.	1.4	38
46	Manipulating Wild and Tamed Phytobiomes: Challenges and Opportunities. Phytobiomes Journal, 2019, 3, 3-21.	1.4	38
47	Dormancy dynamics and dispersal contribute to soil microbiome resilience. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190255.	1.8	38
48	Toward a Generalizable Framework of Disturbance Ecology Through Crowdsourced Science. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	34
49	Computing Workflows for Biologists: A Roadmap. PLoS Biology, 2015, 13, e1002303.	2.6	33
50	Can the black box be cracked? The augmentation of microbial ecology by high-resolution, automated sensing technologies. ISME Journal, 2009, 3, 881-888.	4.4	32
51	Seasonal and Episodic Lake Mixing Stimulate Differential Planktonic Bacterial Dynamics. Microbial Ecology, 2010, 59, 546-554.	1.4	31
52	Broadening Participation in Scientific Conferences during the Era of Social Distancing. Trends in Microbiology, 2020, 28, 949-952.	3.5	31
53	Seasonal Dynamics of Core Fungi in the Switchgrass Phyllosphere, and Co-Occurrence with Leaf Bacteria. Phytobiomes Journal, 2021, 5, 60-68.	1.4	29
54	Endophytic Microbiome Variation Among Single Plant Seeds. Phytobiomes Journal, 2022, 6, 45-55.	1.4	24

#	Article	IF	Citations
55	NITROGEN CHANGES AND DOMAIN BACTERIA RIBOTYPE DIVERSITY IN SOILS OVERLYING THE CENTRALIA, PENNSYLVANIA UNDERGROUND COAL MINE FIRE. Soil Science, 2005, 170, 191-201.	0.9	22
56	Lineage-Specific Responses of Microbial Communities to Environmental Change. Applied and Environmental Microbiology, 2013, 79, 39-47.	1.4	20
57	RefSoil+: a Reference Database for Genes and Traits of Soil Plasmids. MSystems, 2019, 4, .	1.7	16
58	Taxonomically-linked growth phenotypes during arsenic stress among arsenic resistant bacteria isolated from soils overlying the Centralia coal seam fire. PLoS ONE, 2018, 13, e0191893.	1.1	16
59	Temporal Dynamics of South End Tidal Creek (Sapelo Island, Georgia) Bacterial Communities. Applied and Environmental Microbiology, 2009, 75, 1058-1064.	1.4	14
60	Abiotic Treatment to Common Bean Plants Results in an Altered Endophytic Seed Microbiome. Microbiology Spectrum, 2022, 10, e0021021.	1.2	12
61	Strategies for Building Computing Skills To Support Microbiome Analysis: a Five-Year Perspective from the EDAMAME Workshop. MSystems, 2019, 4, .	1.7	10
62	"Gradual Entrainment Lake Inverter―(GELI): A novel device for experimental lake mixing. Limnology and Oceanography: Methods, 2011, 9, 14-28.	1.0	9
63	Understanding Microbiome Stability in a Changing World. MSystems, 2018, 3, .	1.7	9
64	Resource Competition and Host Feedbacks Underlie Regime Shifts in Gut Microbiota. American Naturalist, 2021, 198, 1-12.	1.0	9
65	Biogeography and Diversity of Multi-Trophic Root Zone Microbiomes in Michigan Apple Orchards: Analysis of Rootstock, Scion, and Local Growing Region. Phytobiomes Journal, 2020, 4, 122-132.	1.4	8
66	Managing Plant Microbiomes for Sustainable Biofuel Production. Phytobiomes Journal, 2021, 5, 3-13.	1.4	8
67	Exometabolite Dynamics over Stationary Phase Reveal Strain-Specific Responses. MSystems, 2020, 5, .	1.7	7
68	Locally Adapted <i>Mimulus </i> Ecotypes Differentially Impact Rhizosphere Bacterial and Archaeal Communities in an Environment-Dependent Manner. Phytobiomes Journal, 2020, 4, 53-63.	1.4	6
69	A town on fire! Integrating 16S rRNA gene amplicon analyses into an undergraduate microbiology lecture class. FEMS Microbiology Letters, 2018, 365, .	0.7	5
70	Comparing gut resistome composition among patients with acute Campylobacter infections and healthy family members. Scientific Reports, 2021, 11, 22368.	1.6	2
71	Frontiers and Opportunities in Bioenergy Crop Microbiome Research Networks. Phytobiomes Journal, 2022, 6, 118-126.	1.4	1