
Michelle A Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5836061/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. Journal of Geophysical Research, 2011, 116, .	3.3	370
2	ORGANIC CARBON SUPPLY AND METABOLISM IN A SHALLOW GROUNDWATER ECOSYSTEM. Ecology, 2000, 81, 3133-3148.	1.5	196
3	ARE RIVERS JUST BIG STREAMS? A PULSE METHOD TO QUANTIFY NITROGEN DEMAND IN A LARGE RIVER. Ecology, 2008, 89, 2935-2945.	1.5	182
4	Coupled biogeochemical and hydrological responses of streams and rivers to drought. Freshwater Biology, 2003, 48, 1219-1231.	1.2	152
5	Metabolism, Gas Exchange, and Carbon Spiraling in Rivers. Ecosystems, 2016, 19, 73-86.	1.6	134
6	BIOGEOCHEMICAL AND METABOLIC RESPONSES TO THE FLOOD PULSE IN A SEMIARID FLOODPLAIN. Ecology, 2005, 86, 220-234.	1.5	130
7	Labile dissolved organic carbon supply limits hyporheic denitrification. Journal of Geophysical Research, 2011, 116, .	3.3	128
8	Hydrological variability, organic matter supply and denitrification in the Garonne River ecosystem. Freshwater Biology, 2004, 49, 181-190.	1.2	125
9	A method for estimating surface transient storage parameters for streams with concurrent hyporheic storage. Water Resources Research, 2009, 45, .	1.7	115
10	Acetate retention and metabolism in the hyporheic zone of a mountain stream. Limnology and Oceanography, 1999, 44, 1530-1539.	1.6	113
11	Poor Growth of Rainbow Trout Fed New Zealand Mud Snails Potamopyrgus antipodarum. North American Journal of Fisheries Management, 2008, 28, 701-709.	0.5	85
12	Hydrologic control of nitrogen removal, storage, and export in a mountain stream. Limnology and Oceanography, 2009, 54, 2128-2142.	1.6	83
13	Solute-specific scaling of inorganic nitrogen and phosphorus uptake in streams. Biogeosciences, 2013, 10, 7323-7331.	1.3	72
14	Modeling priming effects on microbial consumption of dissolved organic carbon in rivers. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 982-995.	1.3	67
15	Is in-stream N ₂ fixation an important N source for benthic communities and stream ecosystems?. Journal of the North American Benthological Society, 2008, 27, 186-211.	3.0	58
16	Lakes as buffers of stream dissolved organic matter (DOM) variability: Temporal patterns of DOM characteristics in mountain stream-lake systems. Journal of Geophysical Research, 2011, 116, .	3.3	52
17	Separating physical and biological nutrient retention and quantifying uptake kinetics from ambient to saturation in successive mountain stream reaches. Journal of Geophysical Research, 2010, 115, .	3.3	47
18	The varying role of water column nutrient uptake along river continua in contrasting landscapes. Biogeochemistry, 2015, 125, 115-131.	1.7	42

MICHELLE A BAKER

#	Article	IF	CITATIONS
19	Stream geomorphology in a mountain lake district: hydraulic geometry, sediment sources and sinks, and downstream lake effects. Earth Surface Processes and Landforms, 2007, 32, 525-543.	1.2	41
20	Anoxia, Anaerobic Metabolism, and Biogeochemistry of the Stream-water–Ground-water Interface. , 2000, , 259-283.		35
21	Soil carbon distribution and quality in a montane rangeland-forest mosaic in northern Utah. Forest Ecology and Management, 2005, 220, 284-299.	1.4	35
22	Surface-water hydrodynamics and regimes of a small mountain stream–lake ecosystem. Journal of Hydrology, 2006, 329, 500-513.	2.3	33
23	<scp>iSAW</scp> : Integrating Structure, Actors, and Water to study socioâ€hydroâ€ecological systems. Earth's Future, 2015, 3, 110-132.	2.4	31
24	Stream Nitrogen Inputs Reflect Groundwater Across a Snowmelt-Dominated Montane to Urban Watershed. Environmental Science & Technology, 2016, 50, 1137-1146.	4.6	31
25	Stream Dissolved Organic Matter in Permafrost Regions Shows Surprising Compositional Similarities but Negative Priming and Nutrient Effects. Global Biogeochemical Cycles, 2021, 35, e2020GB006719.	1.9	30
26	Discontinuities in stream nutrient uptake below lakes in mountain drainage networks. Limnology and Oceanography, 2007, 52, 1978-1990.	1.6	27
27	Translational training for tomorrow's environmental scientists. Journal of Environmental Studies and Sciences, 2016, 6, 295-299.	0.9	27
28	Effects of periphyton stoichiometry on mayfly excretion rates and nutrient ratios. Journal of the North American Benthological Society, 2008, 27, 497-508.	3.0	24
29	Dissimilatory nitrate reduction pathways in an oligotrophic freshwater ecosystem: spatial and temporal trends. Aquatic Microbial Ecology, 2011, 65, 55-64.	0.9	24
30	Conservative and Reactive Solute Dynamics. , 2017, , 129-145.		22
31	Differences in nitrate uptake among benthic algal assemblages in a mountain stream. Journal of the North American Benthological Society, 2009, 28, 24-33.	3.0	21
32	Scaling Dissolved Nutrient Removal in River Networks: A Comparative Modeling Investigation. Water Resources Research, 2017, 53, 9623-9641.	1.7	21
33	Disruptions of stream sediment size and stability by lakes in mountain watersheds: potential effects on periphyton biomass. Journal of the North American Benthological Society, 2007, 26, 390-400.	3.0	20
34	Designing and Implementing a Network for Sensing Water Quality and Hydrology across Mountain to Urban Transitions. Journal of the American Water Resources Association, 2017, 53, 1095-1120.	1.0	19
35	Beyond the urban stream syndrome: organic matter budget for diagnostics and restoration of an impaired urban river. Urban Ecosystems, 2016, 19, 1623-1643.	1.1	16
36	Nitrogen partitioning and transport through a subalpine lake measured with an isotope tracer. Limnology and Oceanography, 2012, 57, 1503-1516.	1.6	13

MICHELLE A BAKER

#	Article	IF	CITATIONS
37	Riparian plant isotopes reflect anthropogenic nitrogen perturbations: robust patterns across land use gradients. Ecosphere, 2015, 6, 1-16.	1.0	12
38	Mountain lakes increase organic matter decomposition rates in streams. Journal of the North American Benthological Society, 2010, 29, 521-529.	3.0	11
39	Contrasting soil nitrogen dynamics across a montane meadow and urban lawn in a semi-arid watershed. Urban Ecosystems, 2016, 19, 1083-1101.	1.1	10
40	Organic Matter Is a Mixture of Terrestrial, Autochthonous, and Wastewater Effluent in an Urban River. Frontiers in Environmental Science, 2020, 7, .	1.5	9
41	ORGANIC CARBON SUPPLY AND METABOLISM IN A SHALLOW GROUNDWATER ECOSYSTEM. , 2000, 81, 3133.		8
42	Stream Microbial Community Structured by Trace Elements, Headwater Dispersal, and Large Reservoirs in Sub-Alpine and Urban Ecosystems. Frontiers in Microbiology, 2020, 11, 491425.	1.5	7
43	Water column contributions to the metabolism and nutrient dynamics of mid-sized rivers. Biogeochemistry, 2021, 153, 67-84.	1.7	7
44	Genotoxic effects of gossypol acetic acid on cultured murine erythroleukemia cells. Environmental and Molecular Mutagenesis, 1991, 18, 212-219.	0.9	6
45	Filtering with a drill pump: an efficient method to collect suspended sediment. Journal of the American Water Resources Association, 2016, 52, 262-268.	1.0	6
46	Beyond the urban stream syndrome: organic matter budget for diagnostics and restoration of an impaired urban river. Urban Ecosystems, 2016, 19, 1041-1061.	1.1	5
47	Measuring and Visualizing Research Collaboration and Productivity. Journal of Data and Information Science, 2018, 3, 54-81.	0.5	5
48	Nutrients and Pharmaceuticals Structure Bacterial Core Communities in Urban and Montane Stream Biofilms. Frontiers in Microbiology, 2020, 11, 526545.	1.5	4
49	Towards more realistic estimates of DOM decay in streams: Incubation methods, light, and non-additive effects. Freshwater Science, 2020, 39, 559-575.	0.9	3
50	Organic matter sources and composition in four watersheds with mixed land cover. Hydrobiologia, 2022, 849, 2663-2682.	1.0	2