Joaquin Bedia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/583584/publications.pdf

Version: 2024-02-01

265191 186254 2,622 41 28 42 h-index citations g-index papers 51 51 51 3267 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nature Communications, 2018, 9, 3821.	12.8	275
2	An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth System Science Data, 2020, 12, 2959-2970.	9.9	210
3	An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor crossâ€validation experiment. International Journal of Climatology, 2019, 39, 3750-3785.	3.5	164
4	Decreasing Fires in Mediterranean Europe. PLoS ONE, 2016, 11, e0150663.	2.5	153
5	Reassessing Statistical Downscaling Techniques for Their Robust Application under Climate Change Conditions. Journal of Climate, 2013, 26, 171-188.	3.2	145
6	Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agricultural and Forest Meteorology, 2015, 214-215, 369-379.	4.8	136
7	A framework for species distribution modelling with improved pseudo-absence generation. Ecological Modelling, 2015, 312, 166-174.	2.5	117
8	Forest fire danger projections in the Mediterranean using ENSEMBLES regional climate change scenarios. Climatic Change, 2014, 122, 185-199.	3.6	115
9	Dangers of using global bioclimatic datasets for ecological niche modeling. Limitations for future climate projections. Global and Planetary Change, 2013, 107, 1-12.	3 . 5	94
10	Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA. Environmental Research Letters, 2015, 10, 114013.	5.2	85
11	The R-based climate4R open framework for reproducible climate data access and post-processing. Environmental Modelling and Software, 2019, 111, 42-54.	4.5	81
12	Dynamical and statistical downscaling of seasonal temperature forecasts in Europe: Added value for user applications. Climate Services, 2018, 9, 44-56.	2.5	79
13	Different approaches to model future burnt area in the Iberian Peninsula. Agricultural and Forest Meteorology, 2015, 202, 11-25.	4.8	72
14	Seasonal predictions of Fire Weather Index: Paving the way for their operational applicability in Mediterranean Europe. Climate Services, 2018, 9, 101-110.	2.5	57
15	Reassessing Model Uncertainty for Regional Projections of Precipitation with an Ensemble of Statistical Downscaling Methods. Journal of Climate, 2017, 30, 203-223.	3.2	53
16	Sensitivity of fire weather index to different reanalysis products in the Iberian Peninsula. Natural Hazards and Earth System Sciences, 2012, 12, 699-708.	3.6	52
17	Bias adjustment and ensemble recalibration methods for seasonal forecasting: a comprehensive intercomparison using the C3S dataset. Climate Dynamics, 2019, 53, 1287-1305.	3.8	50
18	Validation of 40 year multimodel seasonal precipitation forecasts: The role of ENSO on the global skill. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1708-1719.	3.3	49

#	Article	IF	CITATIONS
19	The VALUE perfect predictor experiment: Evaluation of temporal variability. International Journal of Climatology, 2019, 39, 3786-3818.	3.5	47
20	Robust projections of Fire Weather Index in the Mediterranean using statistical downscaling. Climatic Change, 2013, 120, 229-247.	3 . 6	45
21	Can bias correction and statistical downscaling methods improve the skill of seasonal precipitation forecasts?. Climate Dynamics, 2018, 50, 1161-1176.	3.8	45
22	Direct and component-wise bias correction of multi-variate climate indices: the percentile adjustment function diagnostic tool. Climatic Change, 2018, 147, 411-425.	3 . 6	40
23	Statistical downscaling with the downscaleR package (v3.1.0): contribution to the VALUE intercomparison experiment. Geoscientific Model Development, 2020, 13, 1711-1735.	3.6	40
24	Statistical Downscaling in the Tropics Can Be Sensitive to Reanalysis Choice: A Case Study for Precipitation in the Philippines. Journal of Climate, 2015, 28, 4171-4184.	3.2	38
25	Assessing the predictability of fire occurrence and area burned across phytoclimatic regions in Spain. Natural Hazards and Earth System Sciences, 2014, 14, 53-66.	3.6	37
26	Seasonal predictability of summer fires in a Mediterranean environment. International Journal of Wildland Fire, 2015, 24, 1076.	2.4	36
27	Predicting plant species distribution across an alpine rangeland in northern Spain. A comparison of probabilistic methods. Applied Vegetation Science, 2011, 14, 415-432.	1.9	34
28	Improved atmospheric circulation over Europe by the new generation of CMIP6 earth system models. Climate Dynamics, 2021, 56, 3527-3540.	3.8	33
29	Background sampling and transferability of species distribution model ensembles under climate change. Global and Planetary Change, 2018, 166, 19-29.	3.5	28
30	Validation of spatial variability in downscaling results from the VALUE perfect predictor experiment. International Journal of Climatology, 2019, 39, 3819-3845.	3 . 5	27
31	On the projection of future fire danger conditions with various instantaneous/mean-daily data sources. Climatic Change, 2013, 118, 827-840.	3.6	26
32	The ECOMS User Data Gateway: Towards seasonal forecast data provision and research reproducibility in the era of Climate Services. Climate Services, 2018, 9, 33-43.	2.5	25
33	An R package to visualize and communicate uncertainty in seasonal climate prediction. Environmental Modelling and Software, 2018, 99, 101-110.	4.5	24
34	On the need of bias adjustment for more plausible climate change projections of extreme heat. Atmospheric Science Letters, 2022, 23, e1072.	1.9	18
35	Tackling Uncertainties of Species Distribution Model Projections with Package mopa. R Journal, 2018, 10, 122.	1.8	16
36	Process-conditioned bias correction for seasonal forecasting: a case-study with ENSO in Peru. Climate Dynamics, 2019, 52, 1673-1683.	3.8	12

#	Article	IF	CITATIONS
37	A Posteriori Random Forests for Stochastic Downscaling of Precipitation by Predicting Probability Distributions. Water Resources Research, 2022, 58, .	4.2	12
38	Statistical downscaling or bias adjustment? A case study involving implausible climate change projections of precipitation in Malawi. Climatic Change, 2020, 162, 1437-1453.	3.6	10
39	Productivity, grazing utilization, forage quality and primary production controls of speciesâ€rich alpine grasslands with ⟨i⟩⟨scp⟩N⟨/scp⟩ardus stricta⟨/i⟩ in northern ⟨scp⟩S⟨/scp⟩pain. Grass and Forage Science, 2013, 68, 297-312.	2.9	9
40	Assessing Multidomain Overlaps and Grand Ensemble Generation in CORDEX Regional Projections. Geophysical Research Letters, 2020, 47, e2019GL086799.	4.0	8
41	The METACLIP semantic provenance framework for climate products. Environmental Modelling and Software, 2019, 119, 445-457.	4.5	7