
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5835836/publications.pdf Version: 2024-02-01

SHIDEH DASHTI

#	Article	IF	CITATIONS
1	Impact of Ground Densification on the Response of Urban Liquefiable Sites and Structures. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2022, 148, .	3.0	10
2	Probabilistic Liquefaction Triggering and Manifestation Models Based on Cumulative Absolute Velocity. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2022, 148, .	3.0	5
3	Centrifuge and Numerical Modeling of an Embankment on Liquefiable Soils Treated with Dense Granular Columns. , 2022, , .		1
4	Influence of Domain Boundaries on the Response of Isolated Structures on Liquefiable Soils. , 2022, , .		2
5	A Probabilistic Predictive Model for Foundation Settlement on Liquefiable Soils Improved with Ground Densification. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2022, 148, .	3.0	4
6	Soil–basement interaction effects on the seismic response of tall buildings with basement levels. Engineering Structures, 2022, 263, 114406.	5.3	3
7	A suite of ground motion prediction equations for cumulative absolute velocity in shallow crustal earthquakes including epistemic uncertainty. Earthquake Spectra, 2021, 37, 937-958.	3.1	6
8	Influence of centrifuge container boundaries and loading characteristics on evaluation of dynamic properties in dry sand. Soil Dynamics and Earthquake Engineering, 2021, 142, 106567.	3.8	4
9	Siteâ€specific liquefaction fragility analysis: Cloud, stripe, and incremental approaches. Earthquake Engineering and Structural Dynamics, 2021, 50, 2529-2550.	4.4	8
10	Numerical investigation of liquefaction mitigation potential with vibroflotation. Soil Dynamics and Earthquake Engineering, 2021, 146, 106736.	3.8	5
11	Seismic Interaction of Adjacent Structures on Liquefiable Soils: Insight from Centrifuge and Numerical Modeling. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, 04021063.	3.0	18
12	Seismic site response of layered saturated sand: comparison of finite element simulations with centrifuge test results. International Journal of Geo-Engineering, 2021, 12, 1.	2.1	4
13	Probabilistic Predictive Model for Liquefaction Triggering in Layered Sites Improved with Dense Granular Columns. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	3.0	8
14	Performance of Embankments on Liquefiable Soils Improved with Dense Granular Columns: Observations from Case Histories and Centrifuge Experiments. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, .	3.0	20
15	Mediating Design Claims: The Social Media and Housing Disaster of the 2017 Halabja Earthquake. Natural Hazards Review, 2020, 21, 04020012.	1.5	2
16	In-Ground Gravel–Rubber Panel Walls to Mitigate and Base Isolate Shallow-Founded Structures on Liquefiable Ground. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, .	3.0	6
17	A physics-informed semi-empirical probabilistic model for the settlement of shallow-founded structures on liquefiable ground. Geotechnique, 2019, 69, 406-419.	4.0	61
18	How do granular columns affect the seismic performance of non-uniform liquefiable sites and their overlying structures?. Soil Dynamics and Earthquake Engineering, 2019, 125, 105715.	3.8	12

#	Article	IF	CITATIONS
19	Impact of Spatial Variations in Permeability of Liquefiable Deposits on Seismic Performance of Structures and Effectiveness of Drains. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2019, 145, 04019030.	3.0	13
20	An Experimental and Numerical Study of Prefabricated Vertical Drains as a Liquefaction Countermeasure for Mat-Founded Structures. , 2019, , .		0
21	Centrifuge Investigation of the Effects of Liquefiable Soil Interlayering and Structural Strength on the Seismic Performance of Soil-Structure Systems. , 2019, , .		0
22	Assessment Supporting the Use of Outcropping Rock Evolutionary Intensity Measures for Prediction of Liquefaction Consequences. Earthquake Spectra, 2019, 35, 1899-1926.	3.1	19
23	Probabilistic Models for Residual and Peak Transient Tilt of Mat-Founded Structures on Liquefiable Soils. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2019, 145, .	3.0	25
24	Influence of prefabricated vertical drains on the seismic performance of similar neighbouring structures founded on liquefiable deposits. Geotechnique, 2019, 69, 971-985.	4.0	20
25	Can ground densification improve seismic performance of the soilâ€foundationâ€structure system on liquefiable soils?. Earthquake Engineering and Structural Dynamics, 2018, 47, 1193-1211.	4.4	26
26	Effects of drainage control on densification as a liquefaction mitigation technique. Soil Dynamics and Earthquake Engineering, 2018, 110, 212-231.	3.8	14
27	Evaluating 2D numerical simulations of granular columns in level and gently sloping liquefiable sites using centrifuge experiments. Soil Dynamics and Earthquake Engineering, 2018, 110, 232-243.	3.8	19
28	A Centrifuge Study of Seismic Structure-Soil-Structure Interaction on Liquefiable Ground and Implications for Design in Dense Urban Areas. Earthquake Spectra, 2018, 34, 1113-1134.	3.1	43
29	Reconnaissance of 2016 Central Italy Earthquake Sequence. Earthquake Spectra, 2018, 34, 1547-1555.	3.1	36
30	Key predictors of structure settlement on liquefiable ground: a numerical parametric study. Soil Dynamics and Earthquake Engineering, 2018, 113, 286-308.	3.8	49
31	Site Response in a Layered Liquefiable Deposit: Evaluation of Different Numerical Tools and Methodologies with Centrifuge Experimental Results. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2018, 144, .	3.0	108
32	Influence of Prefabricated Vertical Drains on the Seismic Performance of Structures Founded on Liquefiable Soils. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2018, 144, .	3.0	32
33	Local Site Effects and Incremental Damage of Buildings during the 2016 Central Italy Earthquake Sequence. Earthquake Spectra, 2018, 34, 1639-1669.	3.1	78
34	Influence of Dense Granular Columns on the Performance of Level and Gently Sloping Liquefiable Sites. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2018, 144, .	3.0	37
35	Considerations for the Mitigation of Earthquake-Induced Soil Liquefaction in Urban Environments. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2018, 144, .	3.0	16
36	A Centrifuge Study of the Influence of Dense Granular Columns on the Performance of Gently Sloping Liquefiable Sites. , 2018, , .		7

#	Article	IF	CITATIONS
37	Site Response in Liquefiable Layered Deposits Considering Spatial Variability in Hydraulic Conductivity. , 2017, , .		2
38	Seismic Settlement of Shallow-Founded Structures on Liquefiable Ground. , 2017, , .		2
39	Centrifuge modeling of mitigation-soil-foundation-structure interaction on liquefiable ground. Soil Dynamics and Earthquake Engineering, 2017, 97, 304-323.	3.8	55
40	Flood loss models for residential buildings, based on the 2013 Colorado floods. Natural Hazards, 2017, 85, 977-1003.	3.4	24
41	Ground Motion Intensity Measures to Evaluate I: The Liquefaction Hazard in the Vicinity of Shallow-Founded Structures. Earthquake Spectra, 2017, 33, 241-276.	3.1	37
42	Ground Motion Intensity Measures to Evaluate II: The Performance of Shallow-Founded Structures on Liquefiable Ground. Earthquake Spectra, 2017, 33, 277-298.	3.1	33
43	Groundâ€Motion Prediction Equations for Arias Intensity, Cumulative Absolute Velocity, and Peak Incremental Ground Velocity for Rock Sites in Different Tectonic Environments. Bulletin of the Seismological Society of America, 2017, 107, 2293-2309.	2.3	32
44	Seismic response of underground reservoir structures in sand: Evaluation of Class-C and C1 numerical simulations using centrifuge experiments. Soil Dynamics and Earthquake Engineering, 2016, 85, 202-216.	3.8	15
45	Development of dynamic centrifuge models of underground structures near tall buildings. Soil Dynamics and Earthquake Engineering, 2016, 86, 89-105.	3.8	43
46	A centrifuge study of the influence of site response, relative stiffness, and kinematic constraints on the seismic performance of buried reservoir structures. Soil Dynamics and Earthquake Engineering, 2016, 88, 427-438.	3.8	21
47	Seismic Performance of Shallow Founded Structures on Liquefiable Ground: Validation of Numerical Simulations Using Centrifuge Experiments. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2016, 142, .	3.0	65
48	Numerical and Centrifuge Modeling of Seismic Soil–Foundation–Structure Interaction on Liquefiable Ground. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2016, 142, .	3.0	79
49	Numerical Simulation of Earthquake Induced Soil Liquefaction: Validation against Centrifuge Experimental Results. , 2015, , .		11
50	Evaluation of 1-D seismic site response modeling of sand using centrifuge experiments. Soil Dynamics and Earthquake Engineering, 2015, 78, 19-31.	3.8	63
51	Effect of Ground Motion Characteristics on Seismic Soil-Foundation-Structure Interaction. Earthquake Spectra, 2015, 31, 1789-1812.	3.1	28
52	Dynamic Calibration of Tactile Sensors for Measurement of Soil Pressures in Centrifuge. Geotechnical Testing Journal, 2015, 38, 20140184.	1.0	17
53	Evaluating the Reliability of Phones as Seismic Monitoring Instruments. Earthquake Spectra, 2014, 30, 721-742.	3.1	30
54	Liquefaction-induced building movements. Bulletin of Earthquake Engineering, 2014, 12, 1129-1156.	4.1	96

#	Article	IF	CITATIONS
55	Numerical Simulation of Building Response on Liquefiable Sand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2013, 139, 1235-1249.	3.0	77
56	Performance of a transparent Flexible Shear Beam container for geotechnical centrifuge modeling of dynamic problems. Soil Dynamics and Earthquake Engineering, 2013, 53, 230-239.	3.8	19
57	Closure to "Mechanisms of Seismically Induced Settlement of Buildings with Shallow Foundations on Liquefiable Soil―by Shideh Dashti, Jonathan D. Bray, Juan M. Pestana, Michael Riemer, and Dan Wilson. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2011, 137, 309-310.	3.0	1
58	Mechanisms of Seismically Induced Settlement of Buildings with Shallow Foundations on Liquefiable Soil. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2010, 136, 151-164.	3.0	208
59	Centrifuge Testing to Evaluate and Mitigate Liquefaction-Induced Building Settlement Mechanisms. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2010, 136, 918-929.	3.0	176
60	Can geotechnical liquefaction indices serve as predictors of foundation settlement?. Earthquake Spectra, 0, , 875529302199484.	3.1	6
61	Physics-Informed Probabilistic Models for Peak Pore Pressure and Shear Strain in Layered, Liquefiable Deposits. Geotechnique, 0, , 1-40.	4.0	Ο