Wendan Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5835830/publications.pdf

Version: 2024-02-01

516561 677027 22 783 16 22 h-index citations g-index papers 22 22 22 946 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Cadmium phytoavailability to rice (Oryza sativa L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxicology and Environmental Safety, 2014, 103, 101-107.	2.9	147
2	Bioremediation of Cd and carbendazim co-contaminated soil by Cd-hyperaccumulator Sedum alfredii associated with carbendazim-degrading bacterial strains. Environmental Science and Pollution Research, 2013, 20, 380-389.	2.7	65
3	Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China. Environmental Monitoring and Assessment, 2015, 187, 378.	1.3	62
4	Effects of alternating wetting and drying versus continuous flooding on chromium fate in paddy soils. Ecotoxicology and Environmental Safety, 2015, 113, 439-445.	2.9	52
5	Reduction Kinetics of Hexavalent Chromium in Soils and Its Correlation with Soil Properties. Journal of Environmental Quality, 2012, 41, 1452-1458.	1.0	51
6	Evaluation of cadmium transfer from soil to leafy vegetables: Influencing factors, transfer models, and indication of soil threshold contents. Ecotoxicology and Environmental Safety, 2018, 164, 355-362.	2.9	51
7	Phytoavailability of Cadmium (Cd) to Pak Choi (Brassica chinensis L.) Grown in Chinese Soils: A Model to Evaluate the Impact of Soil Cd Pollution on Potential Dietary Toxicity. PLoS ONE, 2014, 9, e111461.	1.1	49
8	Isolation and characterization of chromium(VI)-reducing <i>Bacillus</i> sp. FY1 and <i>Arthrobacter</i> sp. WZ2 and their bioremediation potential. Bioremediation Journal, 2017, 21, 100-108.	1.0	38
9	Nitric oxide enhances development of lateral roots in tomato (Solanum lycopersicum L.) under elevated carbon dioxide. Planta, 2013, 237, 137-144.	1.6	37
10	Enhancement of Cd phytoextraction by hyperaccumulator Sedum alfredii using electrical field and organic amendments. Environmental Science and Pollution Research, 2017, 24, 5060-5067.	2.7	31
11	Combined effects of rice straw-derived biochar and water management on transformation of chromium and its uptake by rice in contaminated soils. Ecotoxicology and Environmental Safety, 2021, 208, 111506.	2.9	26
12	The effect of sepiolite application on rice Cd uptake – A two-year field study in Southern China. Journal of Environmental Management, 2020, 254, 109788.	3.8	25
13	Model for Evaluation of the Phytoavailability of Chromium (Cr) to Rice (<i>Oryza sativa</i> L.) in Representative Chinese Soils. Journal of Agricultural and Food Chemistry, 2013, 61, 2925-2932.	2.4	23
14	Continuous flooding stimulates root iron plaque formation and reduces chromium accumulation in rice (Oryza sativa L.). Science of the Total Environment, 2021, 788, 147786.	3.9	22
15	Effects of organic substances on struvite crystallization and recovery. Desalination and Water Treatment, 2016, 57, 10924-10933.	1.0	20
16	Responses of microbial community composition and function to biochar and irrigation management and the linkage to Cr transformation in paddy soil. Environmental Pollution, 2022, 304, 119232.	3.7	17
17	Accumulation of Chromium in Pak Choi (<i>Brassica chinensis</i> L) Grown on Representative Chinese Soils. Journal of Environmental Quality, 2013, 42, 758-765.	1.0	15
18	Chromium-Resistant Bacteria Promote the Reduction of Hexavalent Chromium in Soils. Journal of Environmental Quality, 2014, 43, 507-516.	1.0	14

#	Article	IF	CITATION
19	Responses to cadmium stress in two tomato genotypes differing inheavy metal accumulation. Turkish Journal of Botany, 2015, 39, 615-624.	0.5	14
20	Evaluation of cadmium (Cd) transfer from paddy soil to rice (Oryza sativa L.) using DGT in comparison with conventional chemical methods: derivation of models to predict Cd accumulation in rice grains. Environmental Science and Pollution Research, 2020, 27, 14953-14962.	2.7	12
21	Elevated Carbon Dioxide Induces Stomatal Closure of Arabidopsis thaliana (L.) Heynh. Through an Increased Production of Nitric Oxide. Journal of Plant Growth Regulation, 2015, 34, 372-380.	2.8	10
22	Multi-Component Passivators Regulate Heavy Metal Accumulation in Paddy Soil and Rice: A Three-Site Field Experiment in South China. Toxics, 2022, 10, 259.	1.6	2