Jie Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5835780/publications.pdf Version: 2024-02-01

LIE WANG

#	Article	IF	CITATIONS
1	Threeâ€Dimensional Electrodes for Oxygen Electrocatalysis. ChemElectroChem, 2022, 9, .	1.7	3
2	<i>In situ</i> construction of self-supporting Ni–Fe sulfide for high-efficiency oxygen evolution. New Journal of Chemistry, 2022, 46, 8250-8255.	1.4	8
3	Stabilization of Ultra-Small Stannic Oxide Nanoparticles in Optimizing the Lithium Storage Kinetics. Energy & Fuels, 2022, 36, 4034-4041.	2.5	3
4	Revealing the complex lithiation pathways and kinetics of core-shell NiO@CuO electrode. Energy Storage Materials, 2022, 51, 11-18.	9.5	11
5	Recent Progress of Vacancy Engineering for Electrochemical Energy Conversion Related Applications. Advanced Functional Materials, 2021, 31, 2009070.	7.8	166
6	Filling the in situ-generated vacancies with metal cations captured by Câ^'N bonds of defect-rich 3D carbon nanosheet for bifunctional oxygen electrocatalysis. Journal of Energy Chemistry, 2021, 59, 47-54.	7.1	26
7	Direct laser writing of pure lignin on carbon cloth for highly flexible supercapacitors with enhanced areal capacitance. Sustainable Energy and Fuels, 2021, 5, 3744-3754.	2.5	8
8	Constructing defect-rich Ni ₉ S ₈ /Fe ₅ Ni ₄ S ₈ heterostructure nanoparticles for efficient oxygen evolution reaction and overall water splitting. JPhys Materials, 2021, 4, 034006.	1.8	9
9	Siliconâ€Based Lithium Ion Battery Systems: Stateâ€ofâ€theâ€Art from Half and Full Cell Viewpoint. Advanced Functional Materials, 2021, 31, 2102546.	7.8	83
10	Selfâ€ s upporting Electrodes for Gasâ€involved Key Energy Reactions. Advanced Functional Materials, 2021, 31, 2104620.	7.8	39
11	Co9S8@partly-graphitized carbon composites obtained through catalytic graphitization strategy as anode materials for lithium-ions batteries. Journal of Electroanalytical Chemistry, 2021, 897, 115569.	1.9	7
12	In-situ growth of CoFeS2 on metal-organic frameworks-derived Co-NC polyhedron enables high-performance oxygen electrocatalysis for rechargeable zinc-air batteries. Journal of Power Sources, 2021, 512, 230430.	4.0	25
13	Synergistic regulation of nickel doping/hierarchical structure in cobalt sulfide for high performance zinc-air battery. Applied Catalysis B: Environmental, 2021, 298, 120539.	10.8	31
14	Hierarchical porous activated carbon derived from Enteromorpha prolifera for superior electrochemical capacitive behavior. Ionics, 2020, 26, 403-413.	1.2	16
15	In-situ transformation to accordion-like core-shell structured metal@metallic hydroxide nanosheet from nanorod morphology for overall water-splitting in alkaline media. Journal of Colloid and Interface Science, 2020, 559, 105-114.	5.0	13
16	MoOx nanoparticles anchored on N-doped porous carbon as Li-ion battery electrode. Chemical Engineering Journal, 2020, 381, 122588.	6.6	104
17	Rational design of Cu–Co thiospinel ternary sheet arrays for highly efficient electrocatalytic water splitting. Journal of Materials Chemistry A, 2020, 8, 1799-1807.	5.2	48
18	Well-ordered layered LiNi0.8Co0.1Mn0.1O2 submicron sphere with fast electrochemical kinetics for cathodic lithium storage. Journal of Energy Chemistry, 2020, 47, 188-195.	7.1	30

#	Article	IF	CITATIONS
19	Partial phosphorization of porous Co–Ni–B for efficient hydrogen evolution electrocatalysis. International Journal of Hydrogen Energy, 2020, 45, 4545-4555.	3.8	19
20	Self-Sacrificing Template-Derived Hollow-Structured NiCo ₂ S ₄ Spheres with Highly Efficient Supercapacitance Performance. Energy & Fuels, 2020, 34, 10203-10210.	2.5	21
21	Recent development of two-dimensional metal–organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis. Nanoscale, 2020, 12, 18497-18522.	2.8	69
22	Selfâ€Assembly/Sacrificial Synthesis of Highly Capacitive Hierarchical Porous Carbon from Longan Pulp Biomass. ChemElectroChem, 2020, 7, 4606-4613.	1.7	11
23	In Situ Growth of Core–Shell Heterostructure CoMoO ₄ @CuCo ₂ S ₄ Meshes as Advanced Electrodes for High-Performance Supercapacitors. Energy & Fuels, 2020, 34, 16791-16799.	2.5	20
24	Rational Design and Engineering of Nanomaterials Derived from Prussian Blue and Its Analogs for Electrochemical Water Splitting. Chemistry - an Asian Journal, 2020, 15, 958-972.	1.7	28
25	Freestanding Needle Flower Structure CuCo2S4 on Carbon Cloth for Flexible High Energy Supercapacitors With the Gel Electrolyte. Frontiers in Chemistry, 2020, 8, 62.	1.8	12
26	2.8 V Aqueous Lead Dioxide–Zinc Rechargeable Battery Using H ₂ SO ₄ –K ₂ SO ₄ –KOH Three Electrolytes. Journal of the Electrochemical Society, 2020, 167, 020552.	1.3	8
27	Carbon/Polymer Bilayer-Coated Si-SiO <i>_{<i>x</i>}</i> Electrodes with Enhanced Electrical Conductivity and Structural Stability. ACS Applied Materials & Interfaces, 2020, 12, 19023-19032.	4.0	18
28	Ni-Fe bimetallic core-shell structured catalysts supported on biomass longan aril derived nitrogen doped carbon for efficient oxygen reduction and evolution performance. Materials Today Communications, 2020, 24, 101127.	0.9	6
29	Ag-Pd core–shell electrocatalysts for ethanol oxidation and oxygen reduction reactions in alkaline medium. JPhys Materials, 2020, 4, 014002.	1.8	5
30	Interface Engineering of MoS ₂ for Electrocatalytic Performance Optimization for Hydrogen Generation via Urea Electrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 16577-16584.	3.2	70
31	Hierarchical cobalt sulfide ultra-long microtube composed of nanosheets embedded within N-doped carbon as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 786, 475-480.	2.8	13
32	Recent progress in Co ₉ S ₈ -based materials for hydrogen and oxygen electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 16068-16088.	5.2	95
33	Sea urchin-like Ni–Fe sulfide architectures as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 12350-12357.	5.2	109
34	MOF-derived two-dimensional N-doped carbon nanosheets coupled with Co–Fe–P–Se as efficient bifunctional OER/ORR catalysts. Nanoscale, 2019, 11, 20144-20150.	2.8	83
35	Various strategies to tune the electrocatalytic performance of molybdenum phosphide supported on reduced graphene oxide for hydrogen evolution reaction. Journal of Colloid and Interface Science, 2019, 536, 638-645.	5.0	28
36	Porous two-dimensional layerd molybdenum compounds coupled with N-doped carbon based electrocatalysts for hydrogen evolution reaction. Applied Surface Science, 2019, 465, 724-729.	3.1	15

#	Article	IF	CITATIONS
37	Supramolecular gel assisted synthesis of Co ₂ P nanosheets as an efficient and stable catalyst for oxygen reduction reaction. New Journal of Chemistry, 2018, 42, 8800-8804.	1.4	27
38	Coordination effect of network NiO nanosheet and a carbon layer on the cathode side in constructing a high-performance lithium–sulfur battery. Journal of Materials Chemistry A, 2018, 6, 6503-6509.	5.2	58
39	Heteroatom (P, B, or S) incorporated NiFe-based nanocubes as efficient electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 7062-7069.	5.2	98
40	MoS ₂ –MoP heterostructured nanosheets on polymer-derived carbon as an electrocatalyst for hydrogen evolution reaction. Journal of Materials Chemistry A, 2018, 6, 616-622.	5.2	104
41	Restricting Growth of Ni ₃ Fe Nanoparticles on Heteroatom-Doped Carbon Nanotube/Graphene Nanosheets as Air-Electrode Electrocatalyst for Zn–Air Battery. ACS Applied Materials & Interfaces, 2018, 10, 38093-38100.	4.0	74
42	Exploring Indiumâ€Based Ternary Thiospinel as Conceivable Highâ€Potential Air athode for Rechargeable Zn–Air Batteries. Advanced Energy Materials, 2018, 8, 1802263.	10.2	248
43	Atomic rearrangement from disordered to ordered Pd-Fe nanocatalysts with trace amount of Pt decoration for efficient electrocatalysis. Nano Energy, 2018, 50, 70-78.	8.2	66
44	Tuning the electrocatalytic activity of Pt by structurally ordered PdFe/C for the hydrogen oxidation reaction in alkaline media. Journal of Materials Chemistry A, 2018, 6, 11346-11352.	5.2	41
45	Bimetallic Nanoparticle Oxidation in Three Dimensions by Chemically Sensitive Electron Tomography and <i>in Situ</i> Transmission Electron Microscopy. ACS Nano, 2018, 12, 7866-7874.	7.3	49
46	Recent Progress in Nitrogen-Doped Metal-Free Electrocatalysts for Oxygen Reduction Reaction. Catalysts, 2018, 8, 196.	1.6	59
47	Boosting Oxygen Reduction Catalysis with N-doped Carbon Coated Co ₉ S ₈ Microtubes. ACS Applied Materials & Interfaces, 2018, 10, 25415-25421.	4.0	89
48	Phase conversion of Pt3Ni2/C from disordered alloy to ordered intermetallic with strained lattice for oxygen reduction reaction. Electrochimica Acta, 2018, 283, 1253-1260.	2.6	26
49	Controllable construction of flower-like FeS/Fe2O3 composite for lithium storage. Journal of Power Sources, 2018, 392, 193-199.	4.0	50
50	Hierarchically Porous Electrocatalyst with Vertically Aligned Defect-Rich CoMoS Nanosheets for the Hydrogen Evolution Reaction in an Alkaline Medium. ACS Applied Materials & Interfaces, 2017, 9, 5288-5294.	4.0	93
51	Facile preparation of carbon sphere supported molybdenum compounds (P, C and S) as hydrogen evolution electrocatalysts in acid and alkaline electrolytes. Nano Energy, 2017, 32, 511-519.	8.2	143
52	Controllable synthesis of molybdenum-based electrocatalysts for a hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 4879-4885.	5.2	110
53	Highly efficient and stable MoP-RGO nanoparticles as electrocatalysts for hydrogen evolution. Electrochimica Acta, 2017, 232, 254-261.	2.6	66
54	A general approach for the direct fabrication of metal oxide-based electrocatalysts for efficient bifunctional oxygen electrodes. Sustainable Energy and Fuels, 2017, 1, 823-831.	2.5	24

#	Article	IF	CITATIONS
55	Optimizing the ORR activity of Pd based nanocatalysts by tuning their strain and particle size. Journal of Materials Chemistry A, 2017, 5, 9867-9872.	5.2	98
56	High-rate and long-life lithium-ion battery performance of hierarchically hollow-structured NiCo2O4/CNT nanocomposite. Electrochimica Acta, 2017, 244, 8-15.	2.6	39
57	Effect of KOH etching on the structure and electrochemical performance of SiOC anodes for lithium-ion batteries. Electrochimica Acta, 2017, 245, 287-295.	2.6	61
58	Various Structured Molybdenum-based Nanomaterials as Advanced Anode Materials for Lithium ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 12366-12372.	4.0	29
59	Biomass derived carbon for energy storage devices. Journal of Materials Chemistry A, 2017, 5, 2411-2428.	5.2	632
60	Biomass derived nitrogen doped carbon with porous architecture as efficient electrode materials for supercapacitors. Chinese Chemical Letters, 2017, 28, 2227-2230.	4.8	47
61	Porous Structured Ni–Fe–P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 26134-26142.	4.0	220
62	Molybdenum carbides embedded on carbon nanotubes for efficient hydrogen evolution reaction. Journal of Electroanalytical Chemistry, 2017, 801, 7-13.	1.9	23
63	Nitrogenâ€Doped Hierarchical Porous Carbons Derived from Sodium Alginate as Efficient Oxygen Reduction Reaction Electrocatalysts. ChemCatChem, 2017, 9, 809-815.	1.8	45
64	Self-supported ternary Ni-Fe-P nanosheets derived from metal-organic frameworks as efficient overall water splitting electrocatalysts. Electrochimica Acta, 2017, 258, 423-432.	2.6	90
65	Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 149-164.	2.2	8
66	Graphene Porous Foam Loaded with Molybdenum Carbide Nanoparticulate Electrocatalyst for Effective Hydrogen Generation. ChemSusChem, 2016, 9, 855-862.	3.6	49
67	Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale. Nature Communications, 2016, 7, 13335.	5.8	65
68	Ultralow content of Pt on Pd–Co–Cu/C ternary nanoparticles with excellent electrocatalytic activity and durability for the oxygen reduction reaction. Nano Energy, 2016, 27, 475-481.	8.2	26
69	Pt skin on Pd–Co–Zn/C ternary nanoparticles with enhanced Pt efficiency toward ORR. Nanoscale, 2016, 8, 14793-14802.	2.8	22
70	Nitrogen and sulfur co-doping of 3D hollow-structured carbon spheres as an efficient and stable metal free catalyst for the oxygen reduction reaction. Nanoscale, 2016, 8, 19086-19092.	2.8	125
71	Spontaneous incorporation of gold in palladium-based ternary nanoparticles makes durable electrocatalysts for oxygen reduction reaction. Nature Communications, 2016, 7, 11941.	5.8	67
72	Hollowâ€Structured Carbonâ€Supported Nickel Cobaltite Nanoparticles as an Efficient Bifunctional Electrocatalyst for the Oxygen Reduction and Evolution Reactions. ChemCatChem, 2016, 8, 736-742.	1.8	70

#	Article	IF	CITATIONS
73	Supramolecular gel-assisted synthesis of double shelled Co@CoO@N–C/C nanoparticles with synergistic electrocatalytic activity for the oxygen reduction reaction. Nanoscale, 2016, 8, 4681-4687.	2.8	74
74	Rational design of three-dimensional nitrogen and phosphorus co-doped graphene nanoribbons/CNTs composite for the oxygen reduction. Chinese Chemical Letters, 2016, 27, 597-601.	4.8	51
75	Nitrogen and sulfur co-doping of partially exfoliated MWCNTs as 3-D structured electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2016, 4, 5678-5684.	5.2	66
76	Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries. Nano Energy, 2016, 20, 212-220.	8.2	53
77	Co ₉ S ₈ Nanotubes as an Efficient Catalyst for Hydrogen Evolution Reaction in Alkaline Electrolyte. American Journal of Analytical Chemistry, 2016, 07, 210-218.	0.3	9
78	Template-Free Synthesis of Hollow-Structured Co ₃ O ₄ Nanoparticles as High-Performance Anodes for Lithium-Ion Batteries. ACS Nano, 2015, 9, 1775-1781.	7.3	275
79	Synergistic enhancement of nitrogen and sulfur co-doped graphene with carbon nanosphere insertion for the electrocatalytic oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 7727-7731.	5.2	61
80	Enhanced electrocatalytic activity and stability of Pd ₃ V/C nanoparticles with a trace amount of Pt decoration for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 20966-20972.	5.2	12
81	Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation. Journal of Materials Chemistry A, 2015, 3, 22129-22135.	5.2	46
82	3D hollow structured Co ₂ FeO ₄ /MWCNT as an efficient non-precious metal electrocatalyst for oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 1601-1608.	5.2	48
83	NiCo ₂ S ₄ Nanosheets Grown on Nitrogenâ€Đoped Carbon Foams as an Advanced Electrode for Supercapacitors. Advanced Energy Materials, 2015, 5, 1400977.	10.2	729
84	Facile synthesis of boron and nitrogen-doped graphene as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. International Journal of Hydrogen Energy, 2014, 39, 16043-16052.	3.8	180
85	Facile synthesis of sub-monolayer Sn, Ru, and RuSn decorated Pt/C nanoparticles for formaldehyde electrooxidation. Journal of Electroanalytical Chemistry, 2014, 712, 55-61.	1.9	8
86	Recent Progress on Mesoporous Carbon Materials for Advanced Energy Conversion and Storage. Particle and Particle Systems Characterization, 2014, 31, 515-539.	1.2	77
87	Fabrication of porous carbon spheres for high-performance electrochemical capacitors. RSC Advances, 2014, 4, 7538.	1.7	83
88	A Solution-Phase Bifunctional Catalyst for Lithium–Oxygen Batteries. Journal of the American Chemical Society, 2014, 136, 8941-8946.	6.6	409
89	One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction. Chemical Communications, 2014, 50, 4839-4842.	2.2	302
90	Facile single-step preparation of Pt/N-graphene catalysts with improved methanol electrooxidation activity. Journal of Solid State Electrochemistry, 2013, 17, 1089-1098.	1.2	30

#	Article	IF	CITATIONS
91	The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon, 2013, 52, 181-192.	5.4	275
92	Ordered Hierarchical Mesoporous/Microporous Carbon Derived from Mesoporous Titaniumâ€Carbide/Carbon Composites and its Electrochemical Performance in Supercapacitor. Advanced Energy Materials, 2011, 1, 1101-1108.	10.2	246