Manuel J Aybar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5835453/publications.pdf

Version: 2024-02-01

394286 302012 1,975 42 19 39 citations g-index h-index papers 47 47 47 1935 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mechanisms of Disease, 2022, 14, e1537.	1.5	3
2	Integrated production of biodiesel and industrial wastewater treatment by culturing oleaginous microorganisms., 2022,, 81-101.		1
3	Geoffroea decorticans fruit extracts inhibit the wnt/ \hat{l}^2 -catenin pathway, a therapeutic target in cancer. Biochemical and Biophysical Research Communications, 2021, 546, 118-123.	1.0	3
4	Rhodotorula glutinis T13 as a potential source of microbial lipids for biodiesel generation. Journal of Biotechnology, 2021, 331, 14-18.	1.9	16
5	Neurogenesis From Neural Crest Cells: Molecular Mechanisms in the Formation of Cranial Nerves and Ganglia. Frontiers in Cell and Developmental Biology, 2020, 8, 635.	1.8	37
6	Fatty acids profiles and estimation of the biodiesel quality parameters from Rhodotorula spp. from Antarctica. Biotechnology Letters, 2020, 42, 757-772.	1.1	10
7	Growth and lipid production of Rhodotorula glutinis R4, in comparison to other oleaginous yeasts. Journal of Biotechnology, 2020, 310, 21-31.	1.9	44
8	The role of teratogens in neural crest development. Birth Defects Research, 2020, 112, 584-632.	0.8	19
9	Activation of Hes1 and Msx1 in Transgenic Mouse Embryonic Stem Cells Increases Differentiation into Neural Crest Derivatives. International Journal of Molecular Sciences, 2018, 19, 4025.	1.8	6
10	Neurocristopathies: New insights 150 years after the neural crest discovery. Developmental Biology, 2018, 444, S110-S143.	0.9	136
11	Gli2 is required for the induction and migration of Xenopus laevis neural crest. Mechanisms of Development, 2018, 154, 219-239.	1.7	12
12	Molecular characterization of wdr68 gene in embryonic development of Xenopus laevis. Gene Expression Patterns, 2018, 30, 55-63.	0.3	3
13	Neurocristopathies: How New Discoveries in Neural Crest Research Changed our Understanding. Cell & Developmental Biology, 2018, 07, .	0.3	O
14	Trunk neural crest cells: formation, migration and beyond. International Journal of Developmental Biology, 2017, 61, 5-15.	0.3	45
15	Oleaginous yeasts from Antarctica: Screening and preliminary approach on lipid accumulation. Journal of Basic Microbiology, 2016, 56, 1360-1368.	1.8	37
16	Functional analysis of <i>Hairy</i> genes in <i>Xenopus</i> neural crest initial specification and cell migration. Developmental Dynamics, 2015, 244, 988-1013.	0.8	19
17	Two different vestigial like 4 genes are differentially expressed during Xenopus laevis development. International Journal of Developmental Biology, 2014, 58, 369-377.	0.3	12
18	Developmental expression and role of Kinesin Eg5 during <i>Xenopus laevis</i> embryogenesis. Developmental Dynamics, 2014, 243, 527-540.	0.8	12

#	Article	IF	Citations
19	Indian hedgehog signaling is required for proper formation, maintenance and migration of Xenopus neural crest. Developmental Biology, 2012, 364, 99-113.	0.9	19
20	î" <i>Np63</i> is regulated by BMP4 signaling and is required for early epidermal development in <i>Xenopus</i> . Developmental Dynamics, 2012, 241, 257-269.	0.8	20
21	Cloning and functional characterization of two key enzymes of glycosphingolipid biosynthesis in the amphibian <i>Xenopus laevis</i>). Developmental Dynamics, 2008, 237, 112-123.	0.8	5
22	Dissecting CNBP, a Zinc-Finger Protein Required for Neural Crest Development, in Its Structural and Functional Domains. Journal of Molecular Biology, 2008, 382, 1043-1056.	2.0	28
23	A new role for the Endothelin-1/Endothelin-A receptor signaling during early neural crest specification. Developmental Biology, 2008, 323, 114-129.	0.9	61
24	Interplay between Notch signaling and the homeoprotein Xiro1 is required for neural crest induction in Xenopus embryos. Development (Cambridge), 2004, 131, 347-359.	1.2	97
25	A balance between the anti-apoptotic activity of Slug and the apoptotic activity of msx1 is required for the proper development of the neural crest. Developmental Biology, 2004, 275, 325-342.	0.9	83
26	Regulation of Msx genes by a Bmp gradient is essential for neural crest specification. Development (Cambridge), 2003, 130, 6441-6452.	1.2	277
27	Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Developmental Biology, 2003, 260, 79-96.	0.9	212
28	Snail precedes Slug in the genetic cascade required for the specification and migration of the Xenopus neural crest. Development (Cambridge), 2003, 130, 483-494.	1.2	194
29	Early induction of neural crest cells: lessons learned from frog, fish and chick. Current Opinion in Genetics and Development, 2002, 12, 452-458.	1.5	152
30	Extracellular signals, cell interactions and transcription factors involved in the induction of the neural crest cells. Biological Research, 2002, 35, 267-75.	1.5	22
31	Hypoglycemic effect of the water extract of Smallantus sonchifolius (yacon) leaves in normal and diabetic rats. Journal of Ethnopharmacology, 2001, 74, 125-132.	2.0	200
32	Induction and development of neural crest in Xenopus laevis. Cell and Tissue Research, 2001, 305, 203-209.	1.5	75
33	Renal extracellular matrix alterations in lead-treated rats. Journal of Applied Toxicology, 2001, 21, 417-423.	1.4	20
34	Relationship between Plasma Endothelin-1 and Glycemic Control in Type 2 Diabetes Mellitus. Hormone and Metabolic Research, 2001, 33, 748-751.	0.7	6
35	Inhibition of the synthesis of glycosphingolipid by a ceramide analogue (PPMP) in the gastrulation of Bufo arenarum. Zygote, 2000, 8, 159-169.	0.5	2
36	Effect of gap junction uncoupling in full-grown Bufo arenarum ovarian follicles: participation of cAMP in meiotic arrest. Zygote, 2000, 8, 171-179.	0.5	13

#	Article	IF	CITATIONS
37	Participation of the GM1 ganglioside in the gastrulation of anuran amphibianBufo arenarum. , 2000, 286, 457-472.		4
38	CHANGES IN LIVER GANGLIOSIDES IN STREPTOZOTOCIN-INDUCED DIABETIC RATS. Cell Biology International, 2000, 24, 897-904.	1.4	19
39	CHANGES IN THE EXPRESSION OF SMALL INTESTINE EXTRACELLULAR MATRIX PROTEINS IN STREPTOZOTOCIN-INDUCED DIABETIC RATS. Cell Biology International, 2000, 24, 881-888.	1.4	23
40	Comparative study of vitellogenesis in the anuran amphibians Ceratophrys cranwelli (Leptodactilidae) and Bufo arenarum (Bufonidae). Zygote, 1999, 7, 11-19.	0.5	9
41	Evidence for the presence and participation of 85-75 KDa extracellular matrix components in cell interactions ofbufo arenarum gastrulation., 1997, 277, 181-197.		4
42	Heterologous gap junctions between oocyte and follicle cells inBufo arenarum: Hormonal effects on their permeability and potential role in meiotic arrest. The Journal of Experimental Zoology, 1996, 276, 76-85.	1.4	14