## Jing-Kai Huang

## List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5835270/jing-kai-huang-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

43 5,381 25 46 g-index

46 6,105 13.3 5.36 ext. papers ext. citations avg, IF L-index

| #  | Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IF            | Citations |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|
| 43 | Electrode Engineering in Halide Perovskite Electronics: Plenty of Room at the Interfaces <i>Advanced Materials</i> , <b>2022</b> , e2108616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24            | 12        |
| 42 | Perovskite Quantum Dot Solar Cells Fabricated from Recycled Lead-Acid Battery Waste <b>2022</b> , 4, 120-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7             | 2         |
| 41 | High-Tperovskite membranes as insulators for two-dimensional transistors <i>Nature</i> , <b>2022</b> , 605, 262-267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50.4          | 16        |
| 40 | Recent Progress in Short- to Long-Wave Infrared Photodetection Using 2D Materials and Heterostructures. <i>Advanced Optical Materials</i> , <b>2021</b> , 9, 2001708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.1           | 59        |
| 39 | Strain-Directed Layer-By-Layer Epitaxy Toward van der Waals Homo- and Heterostructures <b>2021</b> , 3, 442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -453          | 3         |
| 38 | Growth of High-Quality Monolayer Transition Metal Dichalcogenide Nanocrystals by Chemical Vapor Deposition and Their Photoluminescence and Electrocatalytic Properties. <i>ACS Applied Materials &amp; Mater</i> | 9.5           | 3         |
| 37 | Steam-Assisted Chemical Vapor Deposition of Zeolitic Imidazolate Framework <b>2020</b> , 2, 485-491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | 14        |
| 36 | Effect of the geometry of precursor crucibles on the growth of MoS2 flakes by chemical vapor deposition. <i>New Journal of Chemistry</i> , <b>2020</b> , 44, 21076-21084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.6           |           |
| 35 | Engineering Point-Defect States in Monolayer WSe. ACS Nano, 2019, 13, 1595-1602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.7          | 28        |
| 34 | Toward the Growth of High Mobility 2D Transition Metal Dichalcogenide Semiconductors. <i>Advanced Materials Interfaces</i> , <b>2019</b> , 6, 1900220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.6           | 23        |
| 33 | Gate-Tunable and Multidirection-Switchable Memristive Phenomena in a Van Der Waals Ferroelectric. <i>Advanced Materials</i> , <b>2019</b> , 31, e1901300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24            | 67        |
| 32 | 2D Materials: Metal-Guided Selective Growth of 2D Materials: Demonstration of a Bottom-Up CMOS Inverter (Adv. Mater. 18/2019). <i>Advanced Materials</i> , <b>2019</b> , 31, 1970132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24            | О         |
| 31 | Metal-Guided Selective Growth of 2D Materials: Demonstration of a Bottom-Up CMOS Inverter. <i>Advanced Materials</i> , <b>2019</b> , 31, e1900861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24            | 28        |
| 30 | Growth of 2H stacked WSe2 bilayers on sapphire. <i>Nanoscale Horizons</i> , <b>2019</b> , 4, 1434-1442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.8          | 11        |
| 29 | One-step growth of reduced graphene oxide on arbitrary substrates. <i>Carbon</i> , <b>2019</b> , 144, 457-463                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.4          | 10        |
| 28 | Self-Aligned and Scalable Growth of Monolayer WSe2MoS2 Lateral Heterojunctions. <i>Advanced Functional Materials</i> , <b>2018</b> , 28, 1706860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 15.6          | 36        |
| 27 | Multidirection Piezoelectricity in Mono- and Multilayered Hexagonal ⊞nSe. <i>ACS Nano</i> , <b>2018</b> , 12, 4976-49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>8</b> 36.7 | 133       |

## (2013-2018)

| 26 | Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li-S Batteries. <i>ACS Nano</i> , <b>2018</b> , 12, 836-843                                                   | 16.7   | 63  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|
| 25 | Efficient electrochemical transformation of CO to C/C chemicals on benzimidazole-functionalized copper surfaces. <i>Chemical Communications</i> , <b>2018</b> , 54, 11324-11327              | 5.8    | 27  |
| 24 | Evidence of indirect gap in monolayer WSe. Nature Communications, 2017, 8, 929                                                                                                               | 17.4   | 72  |
| 23 | Metal Drganic Framework-Based Separators for Enhancing LiB Battery Stability: Mechanism of Mitigating Polysulfide Diffusion. <i>ACS Energy Letters</i> , <b>2017</b> , 2, 2362-2367          | 20.1   | 160 |
| 22 | Disorder-dependent valley properties in monolayer WSe2. Physical Review B, 2017, 96,                                                                                                         | 3.3    | 14  |
| 21 | MoirFelated in-gap states in a twisted MoS2/graphite heterojunction. <i>Npj 2D Materials and Applications</i> , <b>2017</b> , 1,                                                             | 8.8    | 8   |
| 20 | Substrate Lattice-Guided Seed Formation Controls the Orientation of 2D Transition-Metal Dichalcogenides. <i>ACS Nano</i> , <b>2017</b> , 11, 9215-9222                                       | 16.7   | 64  |
| 19 | Multilayer Graphene-WSe Heterostructures for WSe Transistors. <i>ACS Nano</i> , <b>2017</b> , 11, 12817-12823                                                                                | 16.7   | 65  |
| 18 | Scalable Patterning of MoS2 Nanoribbons by Micromolding in Capillaries. <i>ACS Applied Materials &amp; Amp; Interfaces</i> , <b>2016</b> , 8, 20993-1001                                     | 9.5    | 21  |
| 17 | Visualizing band offsets and edge states in bilayer-monolayer transition metal dichalcogenides lateral heterojunction. <i>Nature Communications</i> , <b>2016</b> , 6, 10349                 | 17.4   | 99  |
| 16 | Laterally Stitched Heterostructures of Transition Metal Dichalcogenide: Chemical Vapor Deposition Growth on Lithographically Patterned Area. <i>ACS Nano</i> , <b>2016</b> , 10, 10516-10523 | 16.7   | 41  |
| 15 | Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe2 by Hydrohalic Acid Treatment. <i>ACS Nano</i> , <b>2016</b> , 10, 1454-61                                           | 16.7   | 137 |
| 14 | Graphite edge controlled registration of monolayer MoS2 crystal orientation. <i>Applied Physics Letters</i> , <b>2015</b> , 106, 181904                                                      | 3.4    | 32  |
| 13 | Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. <i>Scientific Reports</i> , <b>2014</b> , 4, 3826                                                     | 4.9    | 678 |
| 12 | Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. <i>ACS Nano</i> , <b>2014</b> , 8, 923-30                                                              | 16.7   | 732 |
| 11 | Enhanced electrocatalytic activity of MoS(x) on TCNQ-treated electrode for hydrogen evolution reaction. <i>ACS Applied Materials &amp; mp; Interfaces</i> , <b>2014</b> , 6, 17679-85        | 9.5    | 65  |
| 10 | Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano, 2014, 8, 8582                                                                                          | 211907 | 413 |
| 9  | Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. <i>Nano Letters</i> , <b>2013</b> , 13, 1852-7                                                       | 11.5   | 524 |

| 8 | Seeing two-dimensional sheets on arbitrary substrates by fluorescence quenching microscopy.<br>Small, <b>2013</b> , 9, 3253-8                                                 | 11   | 5   |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 7 | Selective decoration of Au nanoparticles on monolayer MoS2 single crystals. <i>Scientific Reports</i> , <b>2013</b> , 3, 1839                                                 | 4.9  | 342 |
| 6 | High-gain phototransistors based on a CVD MoSImonolayer. <i>Advanced Materials</i> , <b>2013</b> , 25, 3456-61                                                                | 24   | 743 |
| 5 | High quantity and quality few-layers transition metal disulfide nanosheets from wet-milling exfoliation. <i>RSC Advances</i> , <b>2013</b> , 3, 13193                         | 3.7  | 69  |
| 4 | Chemical Vapor Deposited MoS2 Thin Layers and Their Applications. <i>ECS Transactions</i> , <b>2013</b> , 50, 61-63                                                           | 1    | 3   |
| 3 | Fluorescence Quenching: Seeing Two-Dimensional Sheets on Arbitrary Substrates by Fluorescence Quenching Microscopy (Small 19/2013). <i>Small</i> , <b>2013</b> , 9, 3252-3252 | 11   | 12  |
| 2 | Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. <i>Nanoscale</i> , <b>2012</b> , 4, 6637-41                                                                      | 7.7  | 538 |
| 1 | A Solution-Processed All-Perovskite Memory with Dual-Band Light Response and Tri-Mode Operation. <i>Advanced Functional Materials</i> ,2110975                                | 15.6 | 5   |