List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5835004/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nigratine as dual inhibitor of necroptosis and ferroptosis regulated cell death. Scientific Reports, 2022, 12, 5118.	1.6	9
2	Design and biological evaluation of substituted 5,7-dihydro-6 <i>H</i> -indolo[2,3- <i>c</i>]quinolin-6-one as novel selective Haspin inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1632-1650.	2.5	1
3	InÂvitro identification of imidazo[1,2-a]pyrazine-based antileishmanial agents and evaluation of L.Âmajor casein kinase 1 inhibition. European Journal of Medicinal Chemistry, 2021, 210, 112956.	2.6	14
4	Streptomyces hygroscopicus UFPEDA 3370: A valuable source of the potent cytotoxic agent nigericin and its evaluation against human colorectal cancer cells. Chemico-Biological Interactions, 2021, 333, 109316.	1.7	2
5	From Synthetic Simplified Marine Metabolite Analogues to New Selective Allosteric Inhibitor of Aurora B Kinase. Journal of Medicinal Chemistry, 2021, 64, 1197-1219.	2.9	8
6	New Quinoxaline Derivatives as Dual Pim-1/2 Kinase Inhibitors: Design, Synthesis and Biological Evaluation. Molecules, 2021, 26, 867.	1.7	10
7	Discovery of DB18, a potent inhibitor of CLK kinases with a high selectivity against DYRK1A kinase. Bioorganic and Medicinal Chemistry, 2021, 31, 115962.	1.4	9
8	Thiazolo[5,4â€ <i>f</i>]quinoxalines, Oxazolo[5,4â€ <i>f</i>]quinoxalines and Pyrazino[<i>b,e</i>]isatins: Synthesis from 6â€Aminoquinoxalines and Properties. European Journal of Organic Chemistry, 2021, 2021, 2756-2763.	1.2	3
9	Exploration of 7-azaindole-coumaranone hybrids and their analogues as protein kinase inhibitors. Chemico-Biological Interactions, 2021, 343, 109478.	1.7	6
10	Betulin, a Newly Characterized Compound in Acacia auriculiformis Bark, Is a Multi-Target Protein Kinase Inhibitor. Molecules, 2021, 26, 4599.	1.7	5
11	Synthesis and biological evaluation of selected 7H-pyrrolo[2,3-d]pyrimidine derivatives as novel CDK9/CyclinT and Haspin inhibitors. Chemico-Biological Interactions, 2021, 349, 109643.	1.7	1
12	Discovery of thiazolidin-4-one analogue as selective GSK-3β inhibitor through structure based virtual screening. Bioorganic and Medicinal Chemistry Letters, 2021, 52, 128375.	1.0	2
13	Dibenzofuran Derivatives Inspired from Cercosporamide as Dual Inhibitors of Pim and CLK1 Kinases. Molecules, 2021, 26, 6572.	1.7	3
14	From simple quinoxalines to potent oxazolo[5,4- <i>f</i>]quinoxaline inhibitors of glycogen-synthase kinase 3 (GSK3). Organic and Biomolecular Chemistry, 2020, 18, 154-162.	1.5	10
15	Functionalization of 9-thioxanthone at the 1-position: From arylamino derivatives to [1]benzo(thio)pyrano[4,3,2-de]benzothieno[2,3-b]quinolines of biological interest. Bioorganic Chemistry, 2020, 94, 103347.	2.0	13
16	Regorafenib analogues and their ferrocenic counterparts: synthesis and biological evaluation. New Journal of Chemistry, 2020, 44, 19723-19733.	1.4	2
17	Discovery of simplified benzazole fragments derived from the marine benzosceptrin B as necroptosis inhibitors involving the receptor interacting protein Kinase-1. European Journal of Medicinal Chemistry, 2020, 201, 112337.	2.6	9
18	Synthesis and evaluation of C3 substituted chalconeâ€based derivatives of 7â€azaindole as protein kinase inhibitors. Chemical Biology and Drug Design, 2020, 96, 1395-1407.	1.5	4

#	Article	IF	CITATIONS
19	Development of a CDK10/CycM in vitro Kinase Screening Assay and Identification of First Small-Molecule Inhibitors. Frontiers in Chemistry, 2020, 8, 147.	1.8	12
20	Synthesis and evaluation of 7-azaindole derivatives bearing benzocycloalkanone motifs as protein kinase inhibitors. Bioorganic and Medicinal Chemistry, 2020, 28, 115468.	1.4	8
21	Synthesis and biological evaluation of selected 7-azaindole derivatives as CDK9/Cyclin T and Haspin inhibitors. Medicinal Chemistry Research, 2020, 29, 1449-1462.	1.1	9
22	Identification of a new series of flavopiridol-like structures as kinase inhibitors with high cytotoxic potency. European Journal of Medicinal Chemistry, 2020, 199, 112355.	2.6	17
23	Synthesis of New 2-Phenylamino-4 <i>H</i> -chromene-3-carbonitrile Derivatives and Their Effects on Tumor Cell Lines and against Protein Kinases. International Journal of Organic Chemistry, 2020, 10, 88-103.	0.3	1
24	New Antimicrobials Targeting Bacterial RNA Polymerase Holoenzyme Assembly Identified with an <i>in Vivo</i> BRET-Based Discovery Platform. ACS Chemical Biology, 2019, 14, 1727-1736.	1.6	10
25	Kinase-Based Screening of Marine Natural Extracts Leads to the Identification of a Cytotoxic High Molecular Weight Metabolite from the Mediterranean Sponge Crambe tailliezi. Marine Drugs, 2019, 17, 569.	2.2	7
26	Bilayered Potassium Vanadate K _{0.5} V ₂ O ₅ as Superior Cathode Material for Naâ€lon Batteries. ChemSusChem, 2019, 12, 5192-5198.	3.6	23
27	New pyrido[3,4-g]quinazoline derivatives as CLK1 and DYRK1A inhibitors: synthesis, biological evaluation and binding mode analysis. European Journal of Medicinal Chemistry, 2019, 166, 304-317.	2.6	32
28	Neurymenolide A, a Novel Mitotic Spindle Poison from the New Caledonian Rhodophyta Phacelocarpus neurymenioides. Marine Drugs, 2019, 17, 93.	2.2	6
29	The Anti-Candida albicans Agent 4-AN Inhibits Multiple Protein Kinases. Molecules, 2019, 24, 153.	1.7	5
30	Synthesis and evaluation of new isatin-aminorhodanine hybrids as PIM1 and CLK1 kinase inhibitors. Journal of Molecular Structure, 2019, 1192, 82-90.	1.8	15
31	Kinase inhibitions in pyrido[4,3-h] and [3,4-g]quinazolines: Synthesis, SAR and molecular modeling studies. Bioorganic and Medicinal Chemistry, 2019, 27, 2083-2089.	1.4	11
32	Design, biological evaluation and X-ray crystallography of nanomolar multifunctional ligands targeting simultaneously acetylcholinesterase and glycogen synthase kinase-3. European Journal of Medicinal Chemistry, 2019, 168, 58-77.	2.6	51
33	2-Aminophenones, a common precursor to N-aryl isatins and acridines endowed with bioactivities. Tetrahedron, 2018, 74, 1785-1801.	1.0	27
34	A combined experimental and theoretical study of the thermal [3+2] cycloaddition of carbonyl ylides with activated alkenes. Journal of Molecular Structure, 2018, 1157, 276-287.	1.8	9
35	From Quinoxaline, Pyrido[2,3-b]pyrazine and Pyrido[3,4-b]pyrazine to Pyrazino-Fused Carbazoles and Carbolines. Molecules, 2018, 23, 2961.	1.7	5
36	Benzofuro[3,2-d]pyrimidines inspired from cercosporamide CaPkc1 inhibitor: Synthesis and evaluation of fluconazole susceptibility restoration. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2250-2255.	1.0	11

#	Article	IF	CITATIONS
37	Synthesis and anticancer activity of novel bisindolylhydroxymaleimide derivatives with potent GSK-3 kinase inhibition. Bioorganic and Medicinal Chemistry, 2018, 26, 4209-4224.	1.4	14
38	Structure-based design of novel quinoxaline-2-carboxylic acids and analogues as Pim-1 inhibitors. European Journal of Medicinal Chemistry, 2018, 154, 101-109.	2.6	26
39	Screening for Protein-Protein Interaction Inhibitors Using a Bioluminescence Resonance Energy Transfer (BRET)–Based Assay in Yeast. SLAS Discovery, 2017, 22, 751-759.	1.4	14
40	Li _{2.0} Ni _{0.67} N, a Promising Negative Electrode Material for Li-Ion Batteries with a Soft Structural Response. Inorganic Chemistry, 2017, 56, 13815-13821.	1.9	5
41	Fused Systems Based on 2â€Aminopyrimidines: Synthesis Combining Deprotolithiationâ€in situ Zincation with <i>N</i> â€Arylation Reactions and Biological Properties. European Journal of Organic Chemistry, 2017, 2017, 5903-5915.	1.2	21
42	Effect of cell cycle arrest on intermediate metabolism in the marine diatom <i>Phaeodactylum tricornutum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8007-E8016.	3.3	24
43	Sibiriline, a new small chemical inhibitor of receptorâ€interacting protein kinase 1, prevents immuneâ€dependent hepatitis. FEBS Journal, 2017, 284, 3050-3068.	2.2	23
44	Constituents of Acacia nilotica (L.) Delile with Novel Kinase Inhibitory Activity. Planta Medica International Open, 2017, 4, e108-e113.	0.3	3
45	Synthesis, Docking Study and Kinase Inhibitory Activity of a Number of New Substituted Pyrazolo[3,4- <i>c</i>]pyridines. Chemical and Pharmaceutical Bulletin, 2017, 65, 66-81.	0.6	9
46	Marine Natural Products from New Caledonia—A Review. Marine Drugs, 2016, 14, 58.	2.2	29
47	Microwave synthesis of new 3-(3-aminopropyl)-5-arylidene- 2-thioxo-1,3-thiazolidine-4-ones as potential Ser/Thr protein kinase inhibitors. Medicinal Chemistry Research, 2016, 25, 2940-2958.	1.1	9
48	Synthesis, biological evaluation and molecular modeling studies of imidazo[1,2- a]pyridines derivatives as protein kinase inhibitors. European Journal of Medicinal Chemistry, 2016, 123, 105-114.	2.6	30
49	Synthesis of N-pyridyl azoles using a deprotometalation-iodolysis-N-arylation sequence and evaluation of their antiproliferative activity in melanoma cells. Tetrahedron, 2016, 72, 6467-6476.	1.0	14
50	Discovery of Novel (Imidazo[1,2-a]pyrazin-6-yl)ureas as Antiproliferative Agents Targeting P53 in Non-small Cell Lung Cancer Cell Lines. Anticancer Research, 2016, 36, 1621-30.	0.5	3
51	Synthetic Development of New 3-(4-Arylmethylamino)butyl-5-arylidene-rhodanines under Microwave Irradiation and Their Effects on Tumor Cell Lines and against Protein Kinases. Molecules, 2015, 20, 12412-12435.	1.7	12
52	Azine and Diazine Functionalization Using 2,2,6,6-Tetramethylpiperidino-Based Lithium–Metal Combinations: Application to the Synthesis of 5,9-Disubstituted Pyrido[3′,2′:4,5]pyrrolo[1,2-c]pyrimidines. Synlett, 2015, 26, 2811-2816.	1.0	7
53	Tamoxifen Inhibits CDK5 Kinase Activity by Interacting with p35/p25 and Modulates the Pattern of Tau Phosphorylation. Chemistry and Biology, 2015, 22, 472-482.	6.2	33
54	Development of new highly potent imidazo[1,2-b]pyridazines targeting Toxoplasma gondii calcium-dependent protein kinase 1. European Journal of Medicinal Chemistry, 2015, 105, 80-105.	2.6	25

STéPHANE BACH

#	Article	IF	CITATIONS
55	Synthesis, antileishmanial activity and cytotoxicity of 2,3-diaryl- and 2,3,8-trisubstituted imidazo[1,2-a]pyrazines. European Journal of Medicinal Chemistry, 2015, 103, 381-395.	2.6	23
56	A Comparative Insight of Potassium Vanadates as Positive Electrode Materials for Li Batteries: Influence of the Long-Range and Local Structure. Inorganic Chemistry, 2014, 53, 1764-1772.	1.9	58
57	Effect of Cobalt Substitution on Li _{3–2<i>x</i>} Co _{<i>x</i>} N Local Structure: A XAS Investigation. Inorganic Chemistry, 2014, 53, 6127-6131.	1.9	8
58	Bioprospecting Marine Plankton. Marine Drugs, 2013, 11, 4594-4611.	2.2	57
59	Studies on the reduction of birnessite thin layers: Influence of medium. Electrochimica Acta, 2011, 56, 8564-8570.	2.6	9
60	First BRETâ€based screening assay performed in budding yeast leads to the discovery of CDK5/p25 interaction inhibitors. Biotechnology Journal, 2011, 6, 860-870.	1.8	30
61	An in silico approach for the discovery of CDK5/p25 interaction inhibitors. Biotechnology Journal, 2011, 6, 871-881.	1.8	21
62	Delayed Treatment with Systemic (S)-Roscovitine Provides Neuroprotection and Inhibits In Vivo CDK5 Activity Increase in Animal Stroke Models. PLoS ONE, 2010, 5, e12117.	1.1	83
63	Synthesis of Conjugates of 6-Aminophenanthridine and Guanabenz, Two Structurally Unrelated Prion Inhibitors, for the Determination of Their Cellular Targets by Affinity Chromatography. Bioconjugate Chemistry, 2010, 21, 279-288.	1.8	12
64	Inhibition of RNA Recruitment and Replication of an RNA Virus by Acridine Derivatives with Known Anti-Prion Activities. PLoS ONE, 2009, 4, e7376.	1.1	14
65	Identification of potential cellular targets of aloisine A by affinity chromatography. Bioorganic and Medicinal Chemistry, 2009, 17, 5572-5582.	1.4	6
66	The BRET technology and its application to screening assays. Biotechnology Journal, 2008, 3, 311-324.	1.8	154
67	Antihypertensive Drug Guanabenz Is Active In Vivo against both Yeast and Mammalian Prions. PLoS ONE, 2008, 3, e1981.	1.1	98
68	Protein Folding Activity of Ribosomal RNA Is a Selective Target of Two Unrelated Antiprion Drugs. PLoS ONE, 2008, 3, e2174.	1.1	61
69	Antiprion Drugs as Chemical Tools to Uncover Mechanisms of Prion Propagation. Prion, 2007, 1, 48-52.	0.9	14
70	Identification of intracellular targets of small molecular weight chemical compounds using affinity chromatography. Biotechnology Journal, 2007, 2, 68-75.	1.8	57
71	Cellular coexistence of two high molecular subsets of eEF1B complex. FEBS Letters, 2006, 580, 2755-2760.	1.3	6
72	Improved Tumor Control through Circadian Clock Induction by Seliciclib, a Cyclin-Dependent Kinase Inhibitor. Cancer Research, 2006, 66, 10720-10728.	0.4	109

#	Article	IF	CITATIONS
73	Degradation of Hof1 by SCFGrr1 is important for actomyosin contraction during cytokinesis in yeast. EMBO Journal, 2005, 24, 1440-1452.	3.5	104
74	Roscovitine Targets, Protein Kinases and Pyridoxal Kinase. Journal of Biological Chemistry, 2005, 280, 31208-31219.	1.6	312
75	Crystal Structure of Pyridoxal Kinase in Complex with Roscovitine and Derivatives. Journal of Biological Chemistry, 2005, 280, 31220-31229.	1.6	74
76	Cytotoxicity of diatom-derived oxylipins in organisms belonging to different phyla. Journal of Experimental Biology, 2004, 207, 2935-2946.	0.8	81
77	Independent actions on cyclin-dependent kinases and aryl hydrocarbon receptor mediate the antiproliferative effects of indirubins. Oncogene, 2004, 23, 4400-4412.	2.6	86
78	A single step synthesis of 6-aminophenanthridines from anilines and 2-chlorobenzonitriles. Tetrahedron, 2004, 60, 4705-4708.	1.0	21
79	Raman investigation of the structural changes in anatase LixTiO2 upon electrochemical lithium insertion. Journal of Raman Spectroscopy, 2004, 35, 577-585.	1.2	51
80	Synthesis and Target Identification of Hymenialdisine Analogs. Chemistry and Biology, 2004, 11, 247-259.	6.2	128
81	Isolation of drugs active against mammalian prions using a yeast-based screening assay. Nature Biotechnology, 2003, 21, 1075-1081.	9.4	168
82	Expression in a RabGAP yeast mutant of two human homologues, one of which is an oncogene. Biochemical and Biophysical Research Communications, 2003, 310, 498-504.	1.0	13
83	Co-deletion of theMSB3 andMSB4 coding regions affects bipolar budding and perturbs the organization of the actin cytoskeleton. Yeast, 2000, 16, 1015-1023.	0.8	16
84	Electrochemical proton insertion in manganese spinel oxides from aqueous borate solution. Electrochimica Acta, 1999, 44, 2705-2709.	2.6	20
85	Preparation by a â€~chimie douce' route and characterization of (LiNizMn1 –zO2)(0.5⩽z⩽1) catho materials. Journal of Materials Chemistry, 1996, 6, 1149-1155.	de 6.7	32
86	Effect of Bi-doping on the electrochemical behaviour of layered MnO2 as lithium intercalation compound. Electrochimica Acta, 1995, 40, 785-789.	2.6	42
87	Chemical lithium insertion into sol–gel lamellar manganese dioxide MnO1.85·nH2O. Journal of Materials Chemistry, 1994, 4, 133-137.	6.7	23
88	Structural and electrochemical properties of layered manganese dioxides in relation to their synthesis: classical and sol–gel routes. Journal of Materials Chemistry, 1994, 4, 875-881.	6.7	37