David G Waugh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5834783/publications.pdf Version: 2024-02-01

840585 839398 26 364 11 18 citations h-index g-index papers 33 33 33 426 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Interaction of CO2 laser-modified nylon with osteoblast cells in relation to wettability. Materials Science and Engineering C, 2009, 29, 2514-2524.	3.8	40
2	Laser surface texturing of β-Ti alloy for orthopaedics: Effect of different wavelengths and pulse durations. Applied Surface Science, 2019, 489, 175-186.	3.1	35
3	Effect of laser treatment on the attachment and viability of mesenchymal stem cell responses on shape memory NiTi alloy. Materials Science and Engineering C, 2014, 42, 254-263.	3.8	33
4	On the effects of using CO2 and F2 lasers to modify the wettability of a polymeric biomaterial. Optics and Laser Technology, 2010, 42, 347-356.	2.2	27
5	Wettability and osteoblast cell response modulation through UV laser processing of nylon 6,6. Applied Surface Science, 2011, 257, 8798-8812.	3.1	26
6	NiTi shape memory alloy with enhanced wear performance by laser selective area nitriding for orthopaedic applications. Surface and Coatings Technology, 2017, 309, 1015-1022.	2.2	22
7	Laser surface modification for the prevention of biofouling by infection causing <i>Escherichia Coli</i> . Journal of Laser Applications, 2016, 28, .	0.8	21
8	Altering the wetting properties of orthopaedic titanium alloy (Ti–6Al–7Nb) using laser shock peening. Journal of Alloys and Compounds, 2019, 801, 327-342.	2.8	21
9	Surface Treatments to Modulate Bioadhesion: A Critical Review. Reviews of Adhesion and Adhesives, 2016, 4, 69-103.	3.3	21
10	Osteoblast cell response to a CO2 laser modified polymeric material. Optics and Lasers in Engineering, 2012, 50, 236-247.	2.0	20
11	Laser surface structuring of ceramics, metals and polymers for biomedical applications. , 2016, , 281-299.		17
12	On the Droplet Size and Application of Wettability Analysis for the Development of Ink and Printing Substrates. Langmuir, 2019, 35, 12356-12365.	1.6	14
13	In vitro mesenchymal stem cell response to a CO 2 laser modified polymeric material. Materials Science and Engineering C, 2016, 67, 727-736.	3.8	11
14	In vitro mesenchymal stem cell responses on laser-welded NiTi alloy. Materials Science and Engineering C, 2013, 33, 1344-1354.	3.8	10
15	Influence of Heat Input on Microstructure and Mechanical Properties of Gas Tungsten Arc Welded HSLA S500MC Steel Joints. Metals, 2022, 12, 565.	1.0	7
16	Modifications of surface properties of beta Ti by laser gas diffusion nitriding. Journal of Laser Applications, 2016, 28, 022505.	0.8	6
17	On the study of oil paint adhesion on optically transparent glass: Conservation of reverse paintings on glass. Applied Surface Science, 2015, 357, 293-301.	3.1	4

Laser surface modification of polymeric surfaces for microbiological applications. , 2016, , 197-220.

DAVID G WAUGH

#	Article	IF	CITATIONS
19	Micro-Machining of Diamond, Sapphire and Fused Silica Glass Using a Pulsed Nano-Second Nd:YVO4 Laser. Optics, 2021, 2, 169-183.	0.6	3
20	Laser melting of NiTi and its effects on in vitro mesenchymal stem cell responses. , 2015, , 653-676.		2
21	Modulation of osteoblast cell response through laser surface processing of nylon 6,6. , 2011, , .		1
22	Modulating calcium phosphate formation using CO2 laser engineering of a polymeric material. Materials Science and Engineering C, 2012, 32, 189-200.	3.8	1
23	Laser Surface Processing of Polymers for Biomedical Applications. Springer Series in Materials Science, 2013, , 275-318.	0.4	1
24	Development in laser peening of advanced ceramics. Proceedings of SPIE, 2015, , .	0.8	1
25	Laser sealing of dissimilar polymers for manufacturing packaging products. Journal of Laser Applications, 2016, 28, 022428.	0.8	1
26	Generic parameters governing the wettability characteristics of laser-modified nylon 6,6. , 2011, , .		0