
Jason K Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5834166/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Endocrine Regulation of Energy Metabolism by the Skeleton. Cell, 2007, 130, 456-469.	28.9	2,151
2	Insulin Resistance and a Diabetes Mellitus-Like Syndrome in Mice Lacking the Protein Kinase Akt2 (PKBbeta). Science, 2001, 292, 1728-1731.	12.6	1,652
3	Mechanism by Which Fatty Acids Inhibit Insulin Activation of Insulin Receptor Substrate-1 (IRS-1)-associated Phosphatidylinositol 3-Kinase Activity in Muscle. Journal of Biological Chemistry, 2002, 277, 50230-50236.	3.4	1,254
4	Increased Energy Expenditure, Decreased Adiposity, and Tissue-Specific Insulin Sensitivity in Protein-Tyrosine Phosphatase 1B-Deficient Mice. Molecular and Cellular Biology, 2000, 20, 5479-5489.	2.3	1,150
5	Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature, 2001, 409, 729-733.	27.8	1,058
6	Fibroblast Growth Factor 21 Reverses Hepatic Steatosis, Increases Energy Expenditure, and Improves Insulin Sensitivity in Diet-Induced Obese Mice. Diabetes, 2009, 58, 250-259.	0.6	970
7	Prevention of fat-induced insulin resistance by salicylate. Journal of Clinical Investigation, 2001, 108, 437-446.	8.2	597
8	Surgical implantation of adipose tissue reverses diabetes in lipoatrophic mice. Journal of Clinical Investigation, 2000, 105, 271-278.	8.2	554
9	JNK Expression by Macrophages Promotes Obesity-Induced Insulin Resistance and Inflammation. Science, 2013, 339, 218-222.	12.6	544
10	Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. Journal of Clinical Investigation, 2001, 107, 181-189.	8.2	508
11	A Stress Signaling Pathway in Adipose Tissue Regulates Hepatic Insulin Resistance. Science, 2008, 322, 1539-1543.	12.6	506
12	Differential Effects of Interleukin-6 and -10 on Skeletal Muscle and Liver Insulin Action In Vivo. Diabetes, 2004, 53, 1060-1067.	0.6	459
13	Mechanism of Insulin Resistance in A-ZIP/F-1 Fatless Mice. Journal of Biological Chemistry, 2000, 275, 8456-8460.	3.4	379
14	PKC-Î, knockout mice are protected from fat-induced insulin resistance. Journal of Clinical Investigation, 2004, 114, 823-827.	8.2	371
15	Interleukin-10 Prevents Diet-Induced Insulin Resistance by Attenuating Macrophage and Cytokine Response in Skeletal Muscle. Diabetes, 2009, 58, 2525-2535.	0.6	329
16	Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes and Development, 2001, 15, 1926-1934.	5.9	323
17	Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle. Journal of Clinical Investigation, 2000, 105, 1791-1797.	8.2	283
18	Human 'brite/beige' adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nature Medicine, 2016, 22, 312-318.	30.7	267

#	Article	IF	CITATIONS
19	Unraveling the Temporal Pattern of Diet-Induced Insulin Resistance in Individual Organs and Cardiac Dysfunction in <scp>c57bl/6</scp> Mice. Diabetes, 2005, 54, 3530-3540.	0.6	251
20	Comparing adiposity profiles in three mouse models with altered GH signaling. Growth Hormone and IGF Research, 2004, 14, 309-318.	1.1	244
21	Fat Cell–Specific Ablation of <i>Rictor</i> in Mice Impairs Insulin-Regulated Fat Cell and Whole-Body Glucose and Lipid Metabolism. Diabetes, 2010, 59, 1397-1406.	0.6	238
22	Liver-Specific Deletion of Protein-Tyrosine Phosphatase 1B (PTP1B) Improves Metabolic Syndrome and Attenuates Diet-Induced Endoplasmic Reticulum Stress. Diabetes, 2009, 58, 590-599.	0.6	237
23	The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity. Journal of Cell Biology, 2008, 183, 1235-1242.	5.2	234
24	PKC-Î, knockout mice are protected from fat-induced insulin resistance. Journal of Clinical Investigation, 2004, 114, 823-827.	8.2	226
25	Regulation of Gluconeogenesis by Krüppel-like Factor 15. Cell Metabolism, 2007, 5, 305-312.	16.2	211
26	Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metabolism, 2006, 4, 61-73.	16.2	197
27	FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. Journal of Clinical Investigation, 2010, 120, 357-368.	8.2	196
28	Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. Journal of Clinical Investigation, 2004, 113, 756-763.	8.2	195
29	Txnip balances metabolic and growth signaling via PTEN disulfide reduction. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3921-3926.	7.1	193
30	The transcription factor ATF4 regulates glucose metabolism in mice through its expression in osteoblasts. Journal of Clinical Investigation, 2009, 119, 2807-2817.	8.2	193
31	Genetic Modulation of PPARÎ ³ Phosphorylation Regulates Insulin Sensitivity. Developmental Cell, 2003, 5, 657-663.	7.0	189
32	Long-term, efficient inhibition of microRNA function in mice using rAAV vectors. Nature Methods, 2012, 9, 403-409.	19.0	188
33	Gut-Derived Serotonin Is a Multifunctional Determinant to Fasting Adaptation. Cell Metabolism, 2012, 16, 588-600.	16.2	173
34	RAGE Regulates the Metabolic and Inflammatory Response to High-Fat Feeding in Mice. Diabetes, 2014, 63, 1948-1965.	0.6	168
35	Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. Journal of Clinical Investigation, 2001, 108, 153-160.	8.2	162
36	Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance. Journal of Clinical Investigation, 2007, 117, 1995-2003.	8.2	162

#	Article	IF	CITATIONS
37	ChREBP regulates fructose-induced glucose production independently of insulin signaling. Journal of Clinical Investigation, 2016, 126, 4372-4386.	8.2	159
38	<i>Grp78</i> Heterozygosity Promotes Adaptive Unfolded Protein Response and Attenuates Diet-Induced Obesity and Insulin Resistance. Diabetes, 2010, 59, 6-16.	0.6	157
39	Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy. Journal of Clinical Investigation, 2014, 124, 3339-3351.	8.2	149
40	The PPARα-FGF21 Hormone Axis Contributes to Metabolic Regulation by the Hepatic JNK Signaling Pathway. Cell Metabolism, 2014, 20, 512-525.	16.2	149
41	Role of Rho-kinase in regulation of insulin action and glucose homeostasis. Cell Metabolism, 2005, 2, 119-129.	16.2	148
42	Hyperinsulinemic–Euglycemic Clamp to Assess Insulin Sensitivity In Vivo. Methods in Molecular Biology, 2009, 560, 221-238.	0.9	148
43	Improved Glucose Homeostasis in Mice with Muscle-Specific Deletion of Protein-Tyrosine Phosphatase 1B. Molecular and Cellular Biology, 2007, 27, 7727-7734.	2.3	147
44	Transgenic Overexpression of Protein-tyrosine Phosphatase 1B in Muscle Causes Insulin Resistance, but Overexpression with Leukocyte Antigen-related Phosphatase Does Not Additively Impair Insulin Action. Journal of Biological Chemistry, 2004, 279, 24844-24851.	3.4	144
45	The SHP-1 protein tyrosine phosphatase negatively modulates glucose homeostasis. Nature Medicine, 2006, 12, 549-556.	30.7	141
46	Nutrient Stress Activates Inflammation and Reduces Glucose Metabolism by Suppressing AMP-Activated Protein Kinase in the Heart. Diabetes, 2009, 58, 2536-2546.	0.6	140
47	Uncoupling of Inflammation and Insulin Resistance by NF-κB in Transgenic Mice through Elevated Energy Expenditure. Journal of Biological Chemistry, 2010, 285, 4637-4644.	3.4	138
48	Comparison between surrogate indexes of insulin sensitivity and resistance and hyperinsulinemic euglycemic clamp estimates in mice. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E261-E270.	3.5	136
49	Circulating sphingolipid biomarkers in models of type 1 diabetes. Journal of Lipid Research, 2011, 52, 509-517.	4.2	133
50	Role of Muscle c-Jun NH ₂ -Terminal Kinase 1 in Obesity-Induced Insulin Resistance. Molecular and Cellular Biology, 2010, 30, 106-115.	2.3	132
51	Prevention of Steatosis by Hepatic JNK1. Cell Metabolism, 2009, 10, 491-498.	16.2	130
52	KSR2 Is an Essential Regulator of AMP Kinase, Energy Expenditure, and Insulin Sensitivity. Cell Metabolism, 2009, 10, 366-378.	16.2	128
53	Sclerostin influences body composition by regulating catabolic and anabolic metabolism in adipocytes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11238-E11247.	7.1	125
54	Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPARγ. Journal of Clinical Investigation, 2004, 114, 240-249.	8.2	125

#	Article	IF	CITATIONS
55	Baf60c drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation. Nature Medicine, 2013, 19, 640-645.	30.7	121
56	The Melanocortin-3 Receptor Is Required for Entrainment to Meal Intake. Journal of Neuroscience, 2008, 28, 12946-12955.	3.6	120
57	A major role of insulin in promoting obesity-associated adipose tissue inflammation. Molecular Metabolism, 2015, 4, 507-518.	6.5	116
58	IL-1 Signaling in Obesity-Induced Hepatic Lipogenesis and Steatosis. PLoS ONE, 2014, 9, e107265.	2.5	116
59	Cardiac-Specific Overexpression of Peroxisome Proliferator–Activated Receptor-α Causes Insulin Resistance in Heart and Liver. Diabetes, 2005, 54, 2514-2524.	0.6	113
60	Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance. FASEB Journal, 2015, 29, 3182-3192.	0.5	112
61	Hepatic NADH reductive stress underlies common variation in metabolic traits. Nature, 2020, 583, 122-126.	27.8	108
62	Cardiac-specific Knock-out of Lipoprotein Lipase Alters Plasma Lipoprotein Triglyceride Metabolism and Cardiac Gene Expression. Journal of Biological Chemistry, 2004, 279, 25050-25057.	3.4	107
63	MicroRNA-378 controls classical brown fat expansion to counteract obesity. Nature Communications, 2014, 5, 4725.	12.8	106
64	ILâ€10 prevents agingâ€associated inflammation and insulin resistance in skeletal muscle. FASEB Journal, 2017, 31, 701-710.	0.5	106
65	Requirement of the ATM/p53 Tumor Suppressor Pathway for Glucose Homeostasis. Molecular and Cellular Biology, 2010, 30, 5787-5794.	2.3	105
66	Links Between Insulin Resistance, Adenosine A2B Receptors, and Inflammatory Markers in Mice and Humans. Diabetes, 2011, 60, 669-679.	0.6	104
67	Role of the hypothalamic–pituitary–thyroid axis in metabolic regulation by JNK1. Genes and Development, 2010, 24, 256-264.	5.9	103
68	The Proinflammatory Cytokine Macrophage Migration Inhibitory Factor Regulates Glucose Metabolism during Systemic Inflammation. Journal of Immunology, 2007, 179, 5399-5406.	0.8	101
69	Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. Journal of Clinical Investigation, 2004, 113, 756-763.	8.2	99
70	Syntaxin 4 heterozygous knockout mice develop muscle insulin resistance. Journal of Clinical Investigation, 2001, 107, 1311-1318.	8.2	98
71	Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders. Molecular Metabolism, 2017, 6, 863-872.	6.5	97
72	Caveolin-3 knockout mice show increased adiposity and whole body insulin resistance, with ligand-induced insulin receptor instability in skeletal muscle. American Journal of Physiology - Cell Physiology, 2005, 288, C1317-C1331.	4.6	94

#	Article	IF	CITATIONS
73	Skeletal Muscle-Specific Deletion of Lipoprotein Lipase Enhances Insulin Signaling in Skeletal Muscle but Causes Insulin Resistance in Liver and Other Tissues. Diabetes, 2009, 58, 116-124.	0.6	94
74	New insights into insulin resistance in the diabetic heart. Trends in Endocrinology and Metabolism, 2011, 22, 394-403.	7.1	90
75	Fat uses a TOLL-road to connect inflammation and diabetes. Cell Metabolism, 2006, 4, 417-419.	16.2	89
76	Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1. Diabetes, 2008, 57, 2296-2303.	0.6	89
77	Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPARÎ ³ . Journal of Clinical Investigation, 2004, 114, 240-249.	8.2	89
78	Differential Effects of Rosiglitazone on Skeletal Muscle and Liver Insulin Resistance in A-ZIP/F-1 Fatless Mice. Diabetes, 2003, 52, 1311-1318.	0.6	87
79	Regulation of Metabolic Responses by Adipocyte/ Macrophage Fatty Acid-Binding Proteins in Leptin-Deficient Mice. Diabetes, 2006, 55, 1915-1922.	0.6	85
80	Gingerenone A, a polyphenol present in ginger, suppresses obesity and adipose tissue inflammation in highâ€fat dietâ€fed mice. Molecular Nutrition and Food Research, 2017, 61, 1700139.	3.3	85
81	Hormone-sensitive lipase knockout mice have increased hepatic insulin sensitivity and are protected from short-term diet-induced insulin resistance in skeletal muscle and heart. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E30-E39.	3.5	79
82	Dietary Betaine Supplementation Increases Fgf21 Levels to Improve Glucose Homeostasis and Reduce Hepatic Lipid Accumulation in Mice. Diabetes, 2016, 65, 902-912.	0.6	79
83	Essential role of protein tyrosine phosphatase 1B in obesityâ€induced inflammation and peripheral insulin resistance during aging. Aging Cell, 2012, 11, 284-296.	6.7	78
84	Loss of the Par-1b/MARK2 polarity kinase leads to increased metabolic rate, decreased adiposity, and insulin hypersensitivity in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5680-5685.	7.1	70
85	Adipocyte-Specific Overexpression of FOXC2 Prevents Diet-Induced Increases in Intramuscular Fatty Acyl CoA and Insulin Resistance. Diabetes, 2005, 54, 1657-1663.	0.6	68
86	Glucose Transporter-4 Facilitates Insulin-Stimulated Glucose Uptake in Osteoblasts. Endocrinology, 2016, 157, 4094-4103.	2.8	67
87	Nonobese, insulin-deficient Ins2 ^{Akita} mice develop type 2 diabetes phenotypes including insulin resistance and cardiac remodeling. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1687-E1696.	3.5	64
88	TRPM2 Ca ²⁺ channel regulates energy balance and glucose metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E807-E816.	3.5	64
89	Nocturnal activation of melatonin receptor type 1 signaling modulates diurnal insulin sensitivity via regulation of <scp>Pl</scp> 3K activity. Journal of Pineal Research, 2018, 64, e12462.	7.4	62
90	Multi-dimensional Transcriptional Remodeling by Physiological Insulin InÂVivo. Cell Reports, 2019, 26, 3429-3443.e3.	6.4	62

#	Article	IF	CITATIONS
91	Early Hepatic Insulin Resistance Precedes the Onset of Diabetes in Obese C57BLKS- <i>db/db</i> Mice. Diabetes, 2010, 59, 1616-1625.	0.6	59
92	Altered Interleukin-10 Signaling in Skeletal Muscle Regulates Obesity-Mediated Inflammation and Insulin Resistance. Molecular and Cellular Biology, 2016, 36, 2956-2966.	2.3	59
93	Syntaxin 4 Transgenic Mice Exhibit Enhanced Insulin-Mediated Glucose Uptake in Skeletal Muscle. Diabetes, 2004, 53, 2223-2231.	0.6	58
94	Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion. Nature Communications, 2016, 7, 10686.	12.8	56
95	Identification of an Anti-diabetic, Orally Available Small Molecule that Regulates TXNIP Expression and Glucagon Action. Cell Metabolism, 2020, 32, 353-365.e8.	16.2	56
96	An alternative splicing program promotes adipose tissue thermogenesis. ELife, 2016, 5, .	6.0	55
97	Role of TRPM2 in cell proliferation and susceptibility to oxidative stress. American Journal of Physiology - Cell Physiology, 2013, 304, C548-C560.	4.6	54
98	A big-data approach to understanding metabolic rate and response to obesity in laboratory mice. ELife, 2020, 9, .	6.0	54
99	Adipocyte lipid synthesis coupled to neuronal control of thermogenic programming. Molecular Metabolism, 2017, 6, 781-796.	6.5	52
100	Hyperglycemia, maturity-onset obesity, and insulin resistance in NONcNZO10/LtJ males, a new mouse model of type 2 diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E327-E336.	3.5	51
101	An Osteoblastâ€dependent Mechanism Contributes to the Leptin Regulation of Insulin Secretion. Annals of the New York Academy of Sciences, 2009, 1173, E20-30.	3.8	51
102	PI3-kinase mutation linked to insulin and growth factor resistance in vivo. Journal of Clinical Investigation, 2016, 126, 1401-1412.	8.2	51
103	Muscle-generated BDNF is a sexually dimorphic myokine that controls metabolic flexibility. Science Signaling, 2019, 12, .	3.6	50
104	Effects of chronic Akt activation on glucose uptake in the heart. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E789-E797.	3.5	49
105	Forced Hepatic Overexpression of CEACAM1 Curtails Diet-Induced Insulin Resistance. Diabetes, 2015, 64, 2780-2790.	0.6	48
106	GABA-stimulated adipose-derived stem cells suppress subcutaneous adipose inflammation in obesity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11936-11945.	7.1	48
107	Hepatic Src Homology Phosphatase 2 Regulates Energy Balance in Mice. Endocrinology, 2012, 153, 3158-3169.	2.8	47
108	Cytoplasmic Polyadenylation Element Binding Protein Deficiency Stimulates PTEN and Stat3 mRNA Translation and Induces Hepatic Insulin Resistance. PLoS Genetics, 2012, 8, e1002457.	3.5	46

#	Article	IF	CITATIONS
109	CD40 deficiency in mice exacerbates obesity-induced adipose tissue inflammation, hepatic steatosis, and insulin resistance. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E951-E963.	3.5	46
110	GRP78 plays an essential role in adipogenesis and postnatal growth in mice. FASEB Journal, 2013, 27, 955-964.	0.5	45
111	CRISPR-delivery particles targeting nuclear receptor–interacting protein 1 (Nrip1) in adipose cells to enhance energy expenditure. Journal of Biological Chemistry, 2018, 293, 17291-17305.	3.4	43
112	Loss of Nuclear and Membrane Estrogen Receptor-α Differentially Impairs Insulin Secretion and Action in Male and Female Mice. Diabetes, 2019, 68, 490-501.	0.6	43
113	Adrenalectomy Improves Diabetes in A-ZIP/F-1 Lipoatrophic Mice by Increasing Both Liver and Muscle Insulin Sensitivity. Diabetes, 2002, 51, 2113-2118.	0.6	42
114	Mechanism of glucose intolerance in mice with dominant negative mutation of CEACAM1. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E517-E524.	3.5	42
115	Short-term weight loss attenuates local tissue inflammation and improves insulin sensitivity without affecting adipose inflammation in obese mice. American Journal of Physiology - Endocrinology and Metabolism, 2013, 304, E964-E976.	3.5	42
116	Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance. Molecular Metabolism, 2016, 5, 1149-1161.	6.5	42
117	CRISPR-enhanced human adipocyte browning as cell therapy for metabolic disease. Nature Communications, 2021, 12, 6931.	12.8	41
118	Insulin Resistance in Tetracycline-Repressible Munc18c Transgenic Mice. Diabetes, 2003, 52, 1910-1917.	0.6	40
119	Endothelial Nuclear Factor $\hat{I}^{\text{e}}B$ in Obesity and Aging. Circulation, 2012, 125, 1081-1083.	1.6	39
120	Diet-induced obesity mediated by the JNK/DIO2 signal transduction pathway. Genes and Development, 2013, 27, 2345-2355.	5.9	38
121	Hyperinsulinemia drives hepatic insulin resistance in male mice with liver-specific Ceacam1 deletion independently of lipolysis. Metabolism: Clinical and Experimental, 2019, 93, 33-43.	3.4	38
122	KLF15 Is a Molecular Link between Endoplasmic Reticulum Stress and Insulin Resistance. PLoS ONE, 2013, 8, e77851.	2.5	35
123	A Receptor of the Immunoglobulin Superfamily Regulates Adaptive Thermogenesis. Cell Reports, 2019, 28, 773-791.e7.	6.4	35
124	Arrestin domain-containing 3 (Arrdc3) modulates insulin action and glucose metabolism in liver. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6733-6740.	7.1	35
125	Role of the Mixed-Lineage Protein Kinase Pathway in the Metabolic Stress Response to Obesity. Cell Reports, 2013, 4, 681-688.	6.4	34
126	Adiposityâ€Independent Effects of Aging on Insulin Sensitivity and Clearance in Mice and Humans. Obesity, 2019, 27, 434-443.	3.0	34

Jason K Kim

#	Article	IF	CITATIONS
127	Muscle-generated BDNF (brain derived neurotrophic factor) maintains mitochondrial quality control in female mice. Autophagy, 2022, 18, 1367-1384.	9.1	32
128	Liver-specific reconstitution of CEACAM1 reverses the metabolic abnormalities caused by its global deletion in male mice. Diabetologia, 2017, 60, 2463-2474.	6.3	29
129	Increased Hepatic Insulin Action in Diet-Induced Obese Mice Following Inhibition of Glucosylceramide Synthase. PLoS ONE, 2010, 5, e11239.	2.5	29
130	Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in dietâ€induced obesity. FASEB Journal, 2018, 32, 2292-2304.	0.5	28
131	Excitatory transmission onto AgRP neurons is regulated by cJun NH2-terminal kinase 3 in response to metabolic stress. ELife, 2016, 5, e10031.	6.0	28
132	Inducible Deletion of Protein Kinase Map4k4 in Obese Mice Improves Insulin Sensitivity in Liver and Adipose Tissues. Molecular and Cellular Biology, 2015, 35, 2356-2365.	2.3	27
133	PKCζ-Regulated Inflammation in the Nonhematopoietic Compartment Is Critical for Obesity-Induced Glucose Intolerance. Cell Metabolism, 2010, 12, 65-77.	16.2	26
134	A Protein Scaffold Coordinates SRC-Mediated JNK Activation in Response to Metabolic Stress. Cell Reports, 2017, 20, 2775-2783.	6.4	26
135	Deficiency of Phosphoinositide 3-Kinase Enhancer Protects Mice From Diet-Induced Obesity and Insulin Resistance. Diabetes, 2010, 59, 883-893.	0.6	24
136	Nonacute effects of H-FABP deficiency on skeletal muscle glucose uptake in vitro. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E977-E982.	3.5	23
137	Requirement of JIP1-Mediated c-Jun N-Terminal Kinase Activation for Obesity-Induced Insulin Resistance. Molecular and Cellular Biology, 2010, 30, 4616-4625.	2.3	23
138	Myeloid-specific <i>Acat1</i> ablation attenuates inflammatory responses in macrophages, improves insulin sensitivity, and suppresses diet-induced obesity. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E340-E356.	3.5	23
139	COMP-angiopoietin-1 enhances skeletal muscle blood flow and insulin sensitivity in mice. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E402-E409.	3.5	22
140	Glucose Tolerance in Mice is Linked to the Dose of the p53 Transactivation Domain. Endocrine Research, 2013, 38, 139-150.	1.2	21
141	Transgenic Expression of Dominant-Active IDOL in Liver Causes Diet-Induced Hypercholesterolemia and Atherosclerosis in Mice. Circulation Research, 2014, 115, 442-449.	4.5	21
142	Peripheral Insulin Regulates a Broad Network of Gene Expression in Hypothalamus, Hippocampus, and Nucleus Accumbens. Diabetes, 2021, 70, 1857-1873.	0.6	21
143	Cardiac-Specific Disruption of GH Receptor Alters Glucose Homeostasis While Maintaining Normal Cardiac Performance in Adult Male Mice. Endocrinology, 2016, 157, 1929-1941.	2.8	20
144	Beta-cell specific Insr deletion promotes insulin hypersecretion and improves glucose tolerance prior to global insulin resistance. Nature Communications, 2022, 13, 735.	12.8	20

#	Article	IF	CITATIONS
145	Molecular network analysis of phosphotyrosine and lipid metabolism in hepatic PTP1b deletion mice. Integrative Biology (United Kingdom), 2013, 5, 940.	1.3	19
146	Myeloid-specific deletion of Zfp36 protects against insulin resistance and fatty liver in diet-induced obese mice. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E676-E693.	3.5	19
147	Carcinoembryonic Antigen-Related Cell Adhesion Molecule 2 Controls Energy Balance and Peripheral Insulin Action in Mice. Gastroenterology, 2010, 139, 644-652.e1.	1.3	18
148	Cardiac Expression of Human Type 2 Iodothyronine Deiodinase Increases Glucose Metabolism and Protects Against Doxorubicin-induced Cardiac Dysfunction in Male Mice. Endocrinology, 2013, 154, 3937-3946.	2.8	18
149	Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia. Journal of Biological Chemistry, 2016, 291, 16221-16230.	3.4	17
150	Mss51 deletion enhances muscle metabolism and glucose homeostasis in mice. JCI Insight, 2019, 4, .	5.0	16
151	Exogenous GDF11, but not GDF8, reduces body weight and improves glucose homeostasis in mice. Scientific Reports, 2020, 10, 4561.	3.3	15
152	Distinct Changes in Gut Microbiota Are Associated with Estradiol-Mediated Protection from Diet-Induced Obesity in Female Mice. Metabolites, 2021, 11, 499.	2.9	15
153	Differential roles of FOXO transcription factors on insulin action in brown and white adipose tissue. Journal of Clinical Investigation, 2021, 131, .	8.2	14
154	Characterization of viral insulins reveals white adipose tissue-specific effects in mice. Molecular Metabolism, 2021, 44, 101121.	6.5	13
155	Inflammation and Insulin Resistance: An Old Story with New Ideas. Korean Diabetes Journal, 2010, 34, 137.	0.8	12
156	Genetic ablation of lymphocytes and cytokine signaling in nonobese diabetic mice prevents dietâ€induced obesity and insulin resistance. FASEB Journal, 2016, 30, 1328-1338.	0.5	12
157	The association of phosphoinositide 3â€kinase enhancer A with hepatic insulin receptor enhances its kinase activity. EMBO Reports, 2011, 12, 847-854.	4.5	11
158	Interleukin-6 derived from cutaneous deficiency of stearoyl-CoA desaturase- 1 may mediate metabolic organ crosstalk among skin, adipose tissue and liver. Biochemical and Biophysical Research Communications, 2019, 508, 87-91.	2.1	11
159	Muscle-Specific Insulin Receptor Overexpression Protects Mice From Diet-Induced Glucose Intolerance but Leads to Postreceptor Insulin Resistance. Diabetes, 2020, 69, 2294-2309.	0.6	11
160	Disrupted glucose homeostasis and skeletal-muscle-specific glucose uptake in an exocyst knockout mouse model. Journal of Biological Chemistry, 2021, 296, 100482.	3.4	8
161	Acute effect of growth hormone to induce peripheral insulin resistance is independent of FFA and insulin levels in rats. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E742-E749.	3.5	7
162	Safety of Striatal Infusion of siRNA in a Transgenic Huntington's Disease Mouse Model. Journal of Huntington's Disease, 2015, 4, 219-229.	1.9	7

#	Article	IF	CITATIONS
163	Thioredoxin Interacting Protein Is Required for a Chronic Energy-Rich Diet to Promote Intestinal Fructose Absorption. IScience, 2020, 23, 101521.	4.1	7
164	Maternal exposure to highâ€fat diet during pregnancy and lactation predisposes normal weight offspring mice to develop hepatic inflammation and insulin resistance. Physiological Reports, 2021, 9, e14811.	1.7	7
165	The Development of Insulin Resistance with High Fat Feeding in Rats Does Not Involve Either Decreased Insulin Receptor Tyrosine Kinase Activity or Membrane Glycoprotein PC-1. Biochemical and Molecular Medicine, 1996, 59, 174-181.	1.4	6
166	Deficiency of the Tumor Promoter Genewip1Induces Insulin Resistance. Molecular Endocrinology, 2015, 29, 28-39.	3.7	5
167	Increased Glucose-induced Secretion of Glucagon-like Peptide-1 in Mice Lacking the Carcinoembryonic Antigen-related Cell Adhesion Molecule 2 (CEACAM2). Journal of Biological Chemistry, 2016, 291, 980-988.	3.4	5
168	Defective daily temperature regulation in a mouse model of amyotrophic lateral sclerosis. Experimental Neurology, 2019, 311, 305-312.	4.1	5
169	Reduced glucose clearance as the major determinant of postabsorptive hyperglycemia in diabetic rats. American Journal of Physiology - Endocrinology and Metabolism, 1998, 274, E257-E264.	3.5	4
170	Insulin Sensitivity Is Retained in Mice with Endothelial Loss of Carcinoembryonic Antigen Cell Adhesion Molecule 1. Cells, 2021, 10, 2093.	4.1	4
171	Rho/ROCK mechanosensor in adipocyte stiffness and traction force generation. Biochemical and Biophysical Research Communications, 2022, 606, 42-48.	2.1	2
172	Characterization of Viral Insulin-Like Peptides Reveals Unique White Adipose Tissue Specific Characteristics. Journal of the Endocrine Society, 2021, 5, A437-A438.	0.2	0
173	Abstract 1209: Interleukin-6 Reduces Myocardial Glucose Metabolism by Altering AMPK, Insulin Signaling, and PKC-? in Mice. Circulation, 2007, 116, .	1.6	0
174	Abstract 1766: Diet-Induced Obesity Causes Inflammation by Activating Toll-Like Receptor 4 Signaling and Downregulates AMPK in Heart. Circulation, 2008, 118, .	1.6	0
175	Abstract 5384: Acute Lipid Infusion Causes Macrophage Infiltration, Local Inflammation, and Suppresses AMPK in Heart. Circulation, 2008, 118, .	1.6	0
176	SAT-174 Loss of CEACAM1 in Endothelial Cells Causes Hepatic Fibrogenesis. Journal of the Endocrine Society, 2019, 3, .	0.2	0
177	SUN-092 Distinct Changes in Gut Microbiota Are Associated with Estradiol-Mediated Protection from Diet-Induced Obesity in Female Mice. Journal of the Endocrine Society, 2019, 3, .	0.2	0
178	SAT-151 Hyperinsulinemia-Driven Progressive Metabolic Dysfunction in Male Mice with Liver-Specific CEACAM1 Deletion. Journal of the Endocrine Society, 2019, 3, .	0.2	0