
Monica Galleano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5834038/publications.pdf Version: 2024-02-01

MONICA GALLEANO

#	Article	IF	CITATIONS
1	( â^')-Epicatechin and cardiometabolic risk factors: a focus on potential mechanisms of action. Pflugers Archiv European Journal of Physiology, 2022, 474, 99-115.	2.8	8
2	Linking biomarkers of oxidative stress and disease with flavonoid consumption: From experimental models to humans. Redox Biology, 2021, 42, 101914.	9.0	21
3	Towards the Elucidation of the Role of the Chloride Anion in Arterial Hypertension: Its Link with Oxidative Damage in the Kidney. , 2021, 89, 96-104.		О
4	(â^')-Epicatechin administration protects kidneys against modifications induced by short-terml-NAME treatment in rats. Food and Function, 2020, 11, 318-327.	4.6	12
5	(â~')-Epicatechin protects thoracic aortic perivascular adipose tissue from whitening in high-fat fed mice. Food and Function, 2020, 11, 5944-5954.	4.6	2
6	Dietary (â^ʾ)-epicatechin affects NF-l̂ºB activation and NADPH oxidases in the kidney cortex of high-fructose-fed rats. Food and Function, 2019, 10, 26-32.	4.6	25
7	Effects of quercetin on heart nitric oxide metabolism in I-NAME treated rats. Archives of Biochemistry and Biophysics, 2018, 647, 47-53.	3.0	22
8	Plant bioactives and redox signaling: (–)-Epicatechin as a paradigm. Molecular Aspects of Medicine, 2018, 61, 31-40.	6.4	62
9	LPS-induced renal inflammation is prevented by (â^)â€epicatechin in rats. Redox Biology, 2017, 11, 342-349.	9.0	66
10	Fructose increases corticosterone production in association with NADPH metabolism alterations in rat epididymal white adipose tissue. Journal of Nutritional Biochemistry, 2017, 46, 109-116.	4.2	9
11	Modifications in nitric oxide and superoxide anion metabolism induced by fructose overload in rat heart are prevented by (â^')-epicatechin. Food and Function, 2016, 7, 1876-1883.	4.6	24
12	Dietary (–)-epicatechin mitigates oxidative stress, NO metabolism alterations, and inflammation in renal cortex from fructose-fed rats. Free Radical Biology and Medicine, 2016, 90, 35-46.	2.9	74
13	Amaranth Peptides from Simulated Gastrointestinal Digestion: Antioxidant Activity Against Reactive Species. Plant Foods for Human Nutrition, 2015, 70, 27-34.	3.2	55
14	(â^ʾ)-Epicatechin reduces blood pressure increase in high-fructose-fed rats: effects on the determinants of nitric oxide bioavailability. Journal of Nutritional Biochemistry, 2015, 26, 745-751.	4.2	44
15	(â~')-Epicatechin prevents alterations in the metabolism of superoxide anion and nitric oxide in the hearts of <scp>l</scp> -NAME-treated rats. Food and Function, 2015, 6, 154-160.	4.6	25
16	In vitro measurements and interpretation of total antioxidant capacity. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 931-934.	2.4	124
17	(–)â€Epicatechin reduces blood pressure and improves vasorelaxation in spontaneously hypertensive rats by NOâ€mediated mechanism. IUBMB Life, 2013, 65, 710-715.	3.4	76
18	Novel o-naphthoquinones induce apoptosis of EL-4 T lymphoma cells through the increase of reactive oxygen species. Toxicology in Vitro, 2013, 27, 2094-2104.	2.4	14

Monica Galleano

#	Article	IF	CITATIONS
19	Blood pressure-lowering effect of dietary (â~')-epicatechin administration in L-NAME-treated rats is associated with restored nitric oxide levels. Free Radical Biology and Medicine, 2012, 53, 1894-1902.	2.9	56
20	Flavonoids and metabolic syndrome. Annals of the New York Academy of Sciences, 2012, 1259, 87-94.	3.8	108
21	Lipopolysaccharide (LPS) induction of nitric oxide synthase-2 and cyclooxygenase-2 is impaired in fructose overloaded rats. Life Sciences, 2011, 88, 307-313.	4.3	5
22	Liver preconditioning induced by iron in a rat model of ischemia/reperfusion. Life Sciences, 2011, 89, 221-228.	4.3	22
23	Tumor necrosis factor alpha pathways develops liver apoptosis in type 1 diabetes mellitus. Molecular Immunology, 2011, 48, 1397-1407.	2.2	53
24	Fe Allocation in Liver during Early Stages of Endotoxemia in Fe-Overload Rats. Toxicologic Pathology, 2011, 39, 1075-1083.	1.8	6
25	Identification, cloning and characterization of an aldo-keto reductase from Trypanosoma cruzi with quinone oxido-reductase activity. Molecular and Biochemical Parasitology, 2010, 173, 132-141.	1.1	24
26	Cocoa flavanols: effects on vascular nitric oxide and blood pressure. Journal of Clinical Biochemistry and Nutrition, 2010, 48, 63-67.	1.4	75
27	Hypertension, Nitric Oxide, Oxidants, and Dietary Plant Polyphenols. Current Pharmaceutical Biotechnology, 2010, 11, 837-848.	1.6	106
28	Basic biochemical mechanisms behind the health benefits of polyphenols. Molecular Aspects of Medicine, 2010, 31, 435-445.	6.4	549
29	Antioxidant actions of flavonoids: Thermodynamic and kinetic analysis. Archives of Biochemistry and Biophysics, 2010, 501, 23-30.	3.0	190
30	Mechanism of action of novel naphthofuranquinones on rat liver microsomal peroxidation. Chemico-Biological Interactions, 2009, 182, 213-219.	4.0	6
31	ESR characterization of thallium(III)-mediated nitrones oxidation. Inorganica Chimica Acta, 2009, 362, 2305-2310.	2.4	59
32	Cocoa, Chocolate, and Cardiovascular Disease. Journal of Cardiovascular Pharmacology, 2009, 54, 483-490.	1.9	91
33	Understanding the Clausius–Clapeyron Equation by Employing an Easily Adaptable Pressure Cooker. Journal of Chemical Education, 2008, 85, 276.	2.3	8
34	In vivo supplementation with Ginkgo biloba protects membranes against lipid peroxidation. Phytotherapy Research, 2007, 21, 735-740.	5.8	12
35	Nitric oxide and iron: effect of iron overload on nitric oxide production in endotoxemia. Molecular Aspects of Medicine, 2004, 25, 141-154.	6.4	52
36	Does hepatomegaly alter iron-dependent oxidative effects in human plasma?. Human and Experimental Toxicology, 2003, 22, 401-5.	2.2	0

Monica Galleano

#	Article	IF	CITATIONS
37	Ascorbyl radical/ascorbate ratio in plasma from iron overloaded rats as oxidative stress indicator. Toxicology Letters, 2002, 133, 193-201.	0.8	45
38	Iron-induced changes in nitric oxide and superoxide radical generation in rat liver after lindane or thyroid hormone treatment. Toxicology Letters, 2001, 119, 87-93.	0.8	30
39	Nitric oxide and iron overload Limitations of ESR detection by DETC. Toxicology, 2001, 167, 199-205.	4.2	12
40	Effects of Iron Overload and Lindane Intoxication in Relation to Oxidative Stress, Kupffer Cell Function, and Liver Injury in the Rat. Toxicology and Applied Pharmacology, 2001, 170, 23-28.	2.8	26
41	Time course study of the influence of acute iron overload on kupffer cell functioning and hepatotoxicity assessed in the isolated perfused rat liver. Hepatology, 1998, 27, 1311-1316.	7.3	22
42	Cytotoxicity and Apoptosis Produced by Arachidonic Acid in Hep G2 Cells Overexpressing Human Cytochrome P4502E1. Journal of Biological Chemistry, 1997, 272, 14532-14541.	3.4	173
43	Dietary α-tocopherol supplementation on antioxidant defenses after in vivo iron overload in rats. Toxicology, 1997, 124, 73-81.	4.2	41
44	Mild iron overload effect on rat liver nuclei. Toxicology, 1994, 93, 125-134.	4.2	15
45	Resistance of rat kidney mitochondrial membranes to oxidation induced by acute iron overload. Toxicology, 1994, 88, 141-149.	4.2	7
46	Hepatic chemiluminescence and lipid peroxidation in mild iron overload. Toxicology, 1992, 76, 27-38.	4.2	50
47	Adriamycin effects on hydroperoxide metabolism and growth of human breast tumor cells. Breast Cancer Research and Treatment, 1990, 17, 145-153.	2.5	20