
Kaixin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5833983/publications.pdf Version: 2024-02-01

KAIVINELI

#	Article	IF	CITATIONS
1	A Review on the Critical Role of H ₂ Donor in the Selective Hydrogenation of 5â€Hydroxymethylfurfural. ChemSusChem, 2022, 15, .	3.6	12
2	Catalytic pyrolysis of film waste over Co/Ni pillared montmorillonites towards H2 production. Chemosphere, 2022, 299, 134440.	4.2	11
3	Boosting the performance by the water solvation shell with hydrogen bonds on protonic ionic liquids: insights into the acid catalysis of the glycosidic bond. Catalysis Science and Technology, 2021, 11, 3527-3538.	2.1	4
4	Direct deposition of two-dimensional MXene nanosheets on commercially available filter for fast and efficient dye removal. Journal of Hazardous Materials, 2020, 384, 121367.	6.5	102
5	Direct transformation of lignin into fluorescence-switchable graphene quantum dots and their application in ultrasensitive profiling of a physiological oxidant. Green Chemistry, 2019, 21, 3343-3352.	4.6	87
6	Quasi-homogeneous carbocatalysis for one-pot selective conversion of carbohydrates to 5-hydroxymethylfurfural using sulfonated graphene quantum dots. Carbon, 2018, 136, 224-233.	5.4	60
7	Systematic Bandgap Engineering of Graphene Quantum Dots and Applications for Photocatalytic Water Splitting and CO ₂ Reduction. ACS Nano, 2018, 12, 3523-3532.	7.3	341
8	Heterojunctionâ€Assisted Co ₃ S ₄ @Co ₃ O ₄ Core–Shell Octahedrons for Supercapacitors and Both Oxygen and Carbon Dioxide Reduction Reactions. Small, 2017, 13, 1701724.	5.2	90
9	Hydrothermally driven three-dimensional evolution of mesoporous hierarchical europium oxide hydrangea microspheres for non-enzymatic sensors of hydrogen peroxide detection. Environmental Science: Nano, 2016, 3, 701-706.	2.2	15
10	Understanding the role of hydrogen bonding in BrÃ,nsted acidic ionic liquid-catalyzed transesterification: a combined theoretical and experimental investigation. Physical Chemistry Chemical Physics, 2016, 18, 32723-32734.	1.3	14
11	Controlled Synthesis of 3D Nanoplateâ€Assembled La ₂ O ₃ Hierarchical Microspheres for Enzymeâ€Free Detection of Hydrogen Peroxide. Advanced Materials Interfaces, 2016, 3, 1500833.	1.9	8
12	Mechanistic and kinetic studies on biodiesel production catalyzed by an efficient pyridinium based ionic liquid. Green Chemistry, 2015, 17, 4271-4280.	4.6	24
13	Titaniaâ€Supported Gold Nanoparticles as Efficient Catalysts for the Oxidation of Cellobiose to Organic Acids in Aqueous Medium. ChemCatChem, 2014, 6, 2105-2114.	1.8	36
14	Oneâ€Pot Transformation of Cellobiose to Formic Acid and Levulinic Acid over Ionicâ€Liquidâ€based Polyoxometalate Hybrids. ChemSusChem, 2014, 7, 2670-2677.	3.6	52