Philipp Gutruf

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5833527/philipp-gutruf-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

64 4,613 35 67 g-index

70 5,887 13.9 5.66 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
64	Wearable devices for continuous monitoring of biosignals: Challenges and opportunities <i>APL Bioengineering</i> , 2022 , 6, 021502	6.6	5
63	Osseosurface electronics-thin, wireless, battery-free and multimodal musculoskeletal biointerfaces. <i>Nature Communications</i> , 2021 , 12, 6707	17.4	6
62	Biosymbiotic, personalized, and digitally manufactured wireless devices for indefinite collection of high-fidelity biosignals. <i>Science Advances</i> , 2021 , 7, eabj3269	14.3	5
61	Soft, Wireless and subdermally implantable recording and neuromodulation tools. <i>Journal of Neural Engineering</i> , 2021 ,	5	4
60	Activation of the dorsal, but not the ventral, hippocampus relieves neuropathic pain in rodents. <i>Pain</i> , 2021 , 162, 2865-2880	8	7
59	Wireless battery free fully implantable multimodal recording and neuromodulation tools for songbirds. <i>Nature Communications</i> , 2021 , 12, 1968	17.4	9
58	Wireless and battery-free platforms for collection of biosignals. <i>Biosensors and Bioelectronics</i> , 2021 , 178, 113007	11.8	22
57	Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	7
56	Moving from Pedagogy to Andragogy in Biomedical Engineering Design: Strategies for Lab-at-Home and Distance Learning <i>Biomedical Engineering Education</i> , 2021 , 1, 301-305		
55	Wireless and battery-free technologies for neuroengineering. Nature Biomedical Engineering, 2021,	19	26
54	Wireless, battery-free, and fully implantable electrical neurostimulation in freely moving rodents. <i>Microsystems and Nanoengineering</i> , 2021 , 7, 62	7.7	6
53	Wireless, Accumulation Mode Dosimeters for Monitoring Pulsed and Non-Pulsed Germicidal Lamps. <i>IEEE Sensors Journal</i> , 2021 , 21, 18706-18714	4	
52	Nicotine Sensors for Wearable Battery-Free Monitoring of Vaping. ACS Sensors, 2021,	9.2	3
51	Excitatory VTA to DH projections provide a valence signal to memory circuits. <i>Nature Communications</i> , 2020 , 11, 1466	17.4	8
50	Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 2835-2845	11.5	55
49	Smartphone for monitoring basic vital signs: miniaturized, near-field communication based devices for chronic recording of health 2020 , 177-208		3
48	Skin-interfaced soft microfluidic systems with modular and reusable electronics for capacitive sensing of sweat loss, rate and conductivity. <i>Lab on A Chip</i> , 2020 , 20, 4391-4403	7.2	9

(2018-2020)

47	Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems. <i>Nature Electronics</i> , 2020 , 3, 554-562	28.4	48
46	Bio-Integrated Wearable Systems: A Comprehensive Review. <i>Chemical Reviews</i> , 2019 , 119, 5461-5533	68.1	496
45	Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. <i>Science Advances</i> , 2019 , 5, eaau6356	14.3	142
44	Soft, Skin-Interfaced Microfluidic Systems with Passive Galvanic Stopwatches for Precise Chronometric Sampling of Sweat. <i>Advanced Materials</i> , 2019 , 31, e1902109	24	42
43	Flexible Inorganic Light Emitting Diodes Enabled by New Materials and Designs, With Examples of Their Use in Neuroscience Research 2019 , 1-39		
42	Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. <i>Science Advances</i> , 2019 , 5, eaaw0873	14.3	65
41	Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. <i>Science Advances</i> , 2019 , 5, eaaw5296	14.3	79
40	Semiconductor-Free Field-Emission Nanoelectronics: Application in Air-Channel Transistors 2019 ,		1
39	Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 21427-21437	11.5	61
38	Skin-integrated wireless haptic interfaces for virtual and augmented reality. <i>Nature</i> , 2019 , 575, 473-479	50.4	307
37	Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. <i>Nature Communications</i> , 2019 , 10, 5742	17.4	72
36	Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. <i>Science Advances</i> , 2019 , 5, eaav3294	14.3	299
35	Wireless optoelectronic photometers for monitoring neuronal dynamics in the deep brain. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1374-E1383	3 ^{11.5}	113
34	Implantable, wireless device platforms for neuroscience research. <i>Current Opinion in Neurobiology</i> , 2018 , 50, 42-49	7.6	71
33	Wearable sensors: modalities, challenges, and prospects. <i>Lab on A Chip</i> , 2018 , 18, 217-248	7.2	504
32	Metal-Air Transistors: Semiconductor-Free Field-Emission Air-Channel Nanoelectronics. <i>Nano Letters</i> , 2018 , 18, 7478-7484	11.5	48
31	Epidermal Electronics: Wireless, Battery-Free Epidermal Electronics for Continuous, Quantitative, Multimodal Thermal Characterization of Skin (Small 47/2018). <i>Small</i> , 2018 , 14, 1870226	11	7
30	Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. <i>Nature Electronics</i> , 2018 , 1, 652-660	28.4	92

29	Wireless, battery-free, flexible, miniaturized dosimeters monitor exposure to solar radiation and to light for phototherapy. <i>Science Translational Medicine</i> , 2018 , 10,	17.5	59
28	Wireless, Battery-Free Epidermal Electronics for Continuous, Quantitative, Multimodal Thermal Characterization of Skin. <i>Small</i> , 2018 , 14, e1803192	11	53
27	Perspective: Implantable optical systems for neuroscience research in behaving animal models urrent approaches and future directions. <i>APL Photonics</i> , 2018 , 3, 120901	5.2	10
26	Epidermal electronics for noninvasive, wireless, quantitative assessment of ventricular shunt function in patients with hydrocephalus. <i>Science Translational Medicine</i> , 2018 , 10,	17.5	51
25	Fully Biodegradable Microsupercapacitor for Power Storage in Transient Electronics. <i>Advanced Energy Materials</i> , 2017 , 7, 1700157	21.8	145
24	Oximetry: Miniaturized Battery-Free Wireless Systems for Wearable Pulse Oximetry (Adv. Funct. Mater. 1/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	3
23	Materials and Device Designs for an Epidermal UV Colorimetric Dosimeter with Near Field Communication Capabilities. <i>Advanced Functional Materials</i> , 2017 , 27, 1604465	15.6	108
22	Miniaturized Battery-Free Wireless Systems for Wearable Pulse Oximetry. <i>Advanced Functional Materials</i> , 2017 , 27, 1604373	15.6	182
21	Nanoscale TiO2 dielectric resonator absorbers. <i>Optics Letters</i> , 2016 , 41, 3391-4	3	34
20	Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. <i>Science Advances</i> , 2016 , 2, e1601014	14.3	152
19	Terahertz and optical Dielectric Resonator Antennas: Potential and challenges for efficient designs 2016 ,		5
18	Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies. <i>ACS Nano</i> , 2016 , 10, 133-41	16.7	198
17	Strain Engineering of Wave-like Nanofibers for Dynamically Switchable Adhesive/Repulsive Surfaces. <i>Advanced Functional Materials</i> , 2016 , 26, 399-407	15.6	39
16	Dielectric Resonator Reflectarray as High-Efficiency Nonuniform Terahertz Metasurface. <i>ACS Photonics</i> , 2016 , 3, 1019-1026	6.3	67
15	Stretchable Electronics: Epidermal Electronics with Advanced Capabilities in Near-Field Communication (Small 8/2015). <i>Small</i> , 2015 , 11, 905-905	11	8
14	Flexible bi-layer terahertz chiral metamaterials. <i>Journal of Optics (United Kingdom)</i> , 2015 , 17, 085101	1.7	6
13	Epidermal electronics with advanced capabilities in near-field communication. <i>Small</i> , 2015 , 11, 906-12	11	191
12	Epidermal Electronics: Miniaturized Flexible Electronic Systems with Wireless Power and Near-Field Communication Capabilities (Adv. Funct. Mater. 30/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 491	9 ⁻¹ 45999	2

LIST OF PUBLICATIONS

-	11	Mechanically Tunable High Refractive-Index Contrast TiO2 B DMS Gratings. <i>Advanced Optical Materials</i> , 2015 , 3, 1565-1569	8.1	13
-	10	Donor-Induced Performance Tuning of Amorphous SrTiO3 Memristive Nanodevices: Multistate Resistive Switching and Mechanical Tunability. <i>Advanced Functional Materials</i> , 2015 , 25, 3172-3182	15.6	59
٥	9	Stretchable and Tunable Microtectonic ZnO-Based Sensors and Photonics. <i>Small</i> , 2015 , 11, 4532-9	11	47
8	8	Visible-Blind UV Imaging with Oxygen-Deficient Zinc Oxide Flexible Devices. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500264	6.4	13
7	7	Terahertz Magnetic Mirror Realized with Dielectric Resonator Antennas. <i>Advanced Materials</i> , 2015 , 27, 7137-44	24	48
(6	Miniaturized Flexible Electronic Systems with Wireless Power and Near-Field Communication Capabilities. <i>Advanced Functional Materials</i> , 2015 , 25, 4761-4767	15.6	114
ţ	5	Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales. <i>Applied Physics Reviews</i> , 2015 , 2, 011303	17.3	204
4	4	ZnO: Stretchable and Tunable Microtectonic ZnO-Based Sensors and Photonics (Small 35/2015). <i>Small</i> , 2015 , 11, 4414-4414	11	
3	3	Strain response of stretchable micro-electrodes: Controlling sensitivity with serpentine designs and encapsulation. <i>Applied Physics Letters</i> , 2014 , 104, 021908	3.4	37
2	2	Terahertz reflectarray as a polarizing beam splitter. <i>Optics Express</i> , 2014 , 22, 16148-60	3.3	83
1	1	Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes. NPG Asia Materials, 2013, 5, e62-e62	10.3	58