Solange InÃas Mussatto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5833022/publications.pdf

Version: 2024-02-01

197 papers

14,799 citations

24978 57 h-index 21474 114 g-index

206 all docs

206 docs citations

206 times ranked 13601 citing authors

#	Article	IF	CITATIONS
1	Brewers' spent grain: generation, characteristics and potential applications. Journal of Cereal Science, 2006, 43, 1-14.	1.8	726
2	Production, Composition, and Application of Coffee and Its Industrial Residues. Food and Bioprocess Technology, 2011, 4, 661-672.	2.6	692
3	Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technology, 2004, 93, 1-10.	4.8	666
4	Non-digestible oligosaccharides: A review. Carbohydrate Polymers, 2007, 68, 587-597.	5.1	637
5	Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 2010, 28, 817-830.	6.0	585
6	Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnology Advances, 2011, 29, 365-373.	6.0	547
7	Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food and Bioprocess Technology, 2014, 7, 3493-3503.	2.6	532
8	Brewer's spent grain: a valuable feedstock for industrial applications. Journal of the Science of Food and Agriculture, 2014, 94, 1264-1275.	1.7	370
9	A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydrate Polymers, 2011, 83, 368-374.	5.1	325
10	Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydrate Polymers, 2011, 86, 1137-1144.	5.1	325
11	Extraction of antioxidant phenolic compounds from spent coffee grounds. Separation and Purification Technology, 2011, 83, 173-179.	3.9	311
12	Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chemistry, 2017, 237, 623-631.	4.2	308
13	Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer's spent grain. Enzyme and Microbial Technology, 2008, 43, 124-129.	1.6	289
14	Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer's spent grains. Separation and Purification Technology, 2013, 108, 152-158.	3.9	287
15	Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Industrial Crops and Products, 2003, 17, 171-176.	2.5	213
16	A comprehensive review of engineered biochar: Production, characteristics, and environmental applications. Journal of Cleaner Production, 2020, 270, 122462.	4.6	207
17	Ferulic and p-coumaric acids extraction by alkaline hydrolysis of brewer's spent grain. Industrial Crops and Products, 2007, 25, 231-237.	2.5	206
18	Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates. Applied Energy, 2012, 92, 763-768.	5.1	193

#	Article	lF	Citations
19	The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chemical Engineering Journal, 2011, 168, 1157-1162.	6.6	183
20	Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chemistry, 2009, 112, 929-935.	4.2	181
21	Chemical characterization and liberation of pentose sugars from brewer's spent grain. Journal of Chemical Technology and Biotechnology, 2006, 81, 268-274.	1.6	152
22	Innovation and strategic orientations for the development of advanced biorefineries. Bioresource Technology, 2020, 302, 122847.	4.8	152
23	Acid hydrolysis and fermentation of brewer's spent grain to produce xylitol. Journal of the Science of Food and Agriculture, 2005, 85, 2453-2460.	1.7	144
24	Characterization of polysaccharides extracted from spent coffee grounds by alkali pretreatment. Carbohydrate Polymers, 2015, 127, 347-354.	5.1	142
25	Exploitation of agro industrial wastes as immobilization carrier for solid-state fermentation. Industrial Crops and Products, 2009, 30, 24-27.	2.5	124
26	Advances and opportunities in biomass conversion technologies and biorefineries for the development of a bio-based economy. Biomass and Bioenergy, 2018, 119, 54-60.	2.9	120
27	Production, characterization and application of activated carbon from brewer's spent grain lignin. Bioresource Technology, 2010, 101, 2450-2457.	4.8	114
28	Lignin recovery from brewer's spent grain black liquor. Carbohydrate Polymers, 2007, 70, 218-223.	5.1	113
29	Synthesis and characterization of silver nanoparticles loaded poly(vinyl alcohol)-lignin electrospun nanofibers and their antimicrobial activity. International Journal of Biological Macromolecules, 2018, 120, 763-767.	3.6	105
30	Effects of medium supplementation and pH control on lactic acid production from brewer's spent grain. Biochemical Engineering Journal, 2008, 40, 437-444.	1.8	102
31	Green synthesis of silver nanoparticles using acacia lignin, their cytotoxicity, catalytic, metal ion sensing capability and antibacterial activity. Journal of Environmental Chemical Engineering, 2019, 7, 103296.	3.3	101
32	Techno-economic analysis for brewer's spent grains use on a biorefinery concept: The Brazilian case. Bioresource Technology, 2013, 148, 302-310.	4.8	100
33	Extraction of polysaccharides by autohydrolysis of spent coffee grounds and evaluation of their antioxidant activity. Carbohydrate Polymers, 2017, 157, 258-266.	5.1	99
34	Biotechnological production and application of fructooligosaccharides. Critical Reviews in Biotechnology, 2016, 36, 259-267.	5.1	93
35	Anaerobic digestion process: technological aspects and recent developments. International Journal of Environmental Science and Technology, 2018, 15, 2033-2046.	1.8	89
36	Optimal Experimental Condition for Hemicellulosic Hydrolyzate Treatment with Activated Charcoal for Xylitol Production. Biotechnology Progress, 2008, 20, 134-139.	1.3	88

#	Article	IF	CITATIONS
37	Optimization of autohydrolysis conditions to extract antioxidant phenolic compounds from spent coffee grounds. Journal of Food Engineering, 2017, 199, 1-8.	2.7	88
38	Hydrolysate detoxification with activated charcoal for xylitol production by Candida guilliermondii. , 2001, 23, 1681-1684.		87
39	Fructooligosaccharides and \hat{l}^2 -fructofuranosidase production by Aspergillus japonicus immobilized on lignocellulosic materials. Journal of Molecular Catalysis B: Enzymatic, 2009, 59, 76-81.	1.8	85
40	Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresource Technology, 2018, 247, 736-743.	4.8	83
41	The effect of agitation speed, enzyme loading and substrate concentration on enzymatic hydrolysis of cellulose from brewer's spent grain. Cellulose, 2008, 15, 711-721.	2.4	82
42	Growth of fungal strains on coffee industry residues with removal of polyphenolic compounds. Biochemical Engineering Journal, 2012, 60, 87-90.	1.8	81
43	Selection of the Solvent and Extraction Conditions for Maximum Recovery of Antioxidant Phenolic Compounds from Coffee Silverskin. Food and Bioprocess Technology, 2014, 7, 1322-1332.	2.6	80
44	Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides. International Journal of Biological Macromolecules, 2018, 106, 647-655.	3.6	80
45	Evaluation of different pretreatment strategies for protein extraction from brewer's spent grains. Industrial Crops and Products, 2018, 125, 443-453.	2.5	73
46	Increase in the fructooligosaccharides yield and productivity by solid-state fermentation with Aspergillus japonicus using agro-industrial residues as support and nutrient source. Biochemical Engineering Journal, 2010, 53, 154-157.	1.8	72
47	The Influence of Initial Xylose Concentration, Agitation, and Aeration on Ethanol Production by Pichia stipitis from Rice Straw Hemicellulosic Hydrolysate. Applied Biochemistry and Biotechnology, 2010, 162, 1306-1315.	1.4	70
48	Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment. Renewable Energy, 2018, 129, 733-747.	4.3	69
49	Alkaline deacetylation as a strategy to improve sugars recovery and ethanol production from rice straw hemicellulose and cellulose. Industrial Crops and Products, 2017, 106, 65-73.	2.5	68
50	Technoâ€economic assessment of biorefinery technologies for aviation biofuels supply chains in Brazil. Biofuels, Bioproducts and Biorefining, 2017, 11, 67-91.	1.9	68
51	Extraction of sulfated polysaccharides by autohydrolysis of brown seaweed Fucus vesiculosus. Journal of Applied Phycology, 2013, 25, 31-39.	1.5	67
52	Sugarcane bagasse hydrolysate as a potential feedstock for red pigment production by Monascus ruber. Food Chemistry, 2018, 245, 786-791.	4.2	65
53	Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer's spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochemistry, 2008, 43, 540-546.	1.8	63
54	Optimal fermentation conditions for maximizing the ethanol production by Kluyveromyces fragilis from cheese whey powder. Biomass and Bioenergy, 2011, 35, 1977-1982.	2.9	63

#	Article	IF	Citations
55	Fermentation medium and oxygen transfer conditions that maximize the xylose conversion to ethanol by Pichia stipitis. Renewable Energy, 2012, 37, 259-265.	4.3	62
56	Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass: A review. Biomass and Bioenergy, 2019, 130, 105397.	2.9	62
57	Brewer's spent grain as raw material for lactic acid production by Lactobacillus delbrueckii. Biotechnology Letters, 2007, 29, 1973-1976.	1.1	61
58	Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment. Critical Reviews in Biotechnology, 2018, 38, 483-493.	5.1	61
59	Lipid and carotenoid production from wheat straw hydrolysates by different oleaginous yeasts. Journal of Cleaner Production, 2020, 249, 119308.	4.6	61
60	Comparison of different procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes. Journal of Chemical Technology and Biotechnology, 2006, 81, 152-157.	1.6	60
61	An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. Journal of Chemical Technology and Biotechnology, 2010, 85, 1092-1098.	1.6	58
62	Antibacterial activity of crude methanolic extract and fractions obtained from Larrea tridentata leaves. Industrial Crops and Products, 2013, 41, 306-311.	2.5	58
63	Optimum operating conditions for brewer's spent grain soda pulping. Carbohydrate Polymers, 2006, 64, 22-28.	5.1	57
64	Production, chemical characterization, and sensory profile of a novel spirit elaborated from spent coffee ground. LWT - Food Science and Technology, 2013, 54, 557-563.	2.5	57
65	Effect of pH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xylitol production. Journal of Chemical Technology and Biotechnology, 2004, 79, 590-596.	1.6	55
66	Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides. Carbohydrate Research, 2009, 344, 795-800.	1.1	55
67	Isolation of polyphenols from spent coffee grounds and silverskin by mild hydrothermal pretreatment. Preparative Biochemistry and Biotechnology, 2016, 46, 406-409.	1.0	55
68	Chemical composition and antioxidant activity of sulphated polysaccharides extracted from Fucus vesiculosus using different hydrothermal processes. Chemical Papers, 2014, 68, .	1.0	54
69	Hydrogen peroxide bleaching of cellulose pulps obtained from brewer's spent grain. Cellulose, 2008, 15, 641-649.	2.4	52
70	Fructooligosaccharide production by Penicillium expansum. Biotechnology Letters, 2010, 32, 837-840.	1.1	52
71	Techno-economic evaluation of strategies based on two steps organosolv pretreatment and enzymatic hydrolysis of sugarcane bagasse for ethanol production. Renewable Energy, 2016, 86, 270-279.	4.3	51
72	Ethanol Production from Brewers' Spent Grain Pretreated by Dilute Phosphoric Acid. Energy & Energy & Fuels, 2018, 32, 5226-5233.	2.5	51

#	Article	IF	CITATIONS
73	Techno-economic assessment of bioenergy and fertilizer production by anaerobic digestion of brewer's spent grains in a biorefinery concept. Journal of Cleaner Production, 2021, 297, 126600.	4.6	51
74	Maximization of Fructooligosaccharides and \hat{l}^2 -Fructofuranosidase Production by Aspergillus japonicus under Solid-State Fermentation Conditions. Food and Bioprocess Technology, 2013, 6, 2128-2134.	2.6	50
75	Integration of subcritical water pretreatment and anaerobic digestion technologies for valorization of aA§ai processing industries residues. Journal of Cleaner Production, 2019, 228, 1131-1142.	4.6	50
76	Bench scale steam explosion pretreatment of acid impregnated elephant grass biomass and its impacts on biomass composition, structure and hydrolysis. Industrial Crops and Products, 2017, 106, 48-58.	2.5	49
77	Influence of the toxic compounds present in brewer's spent grain hemicellulosic hydrolysate on xylose-to-xylitol bioconversion by Candida guilliermondii. Process Biochemistry, 2005, 40, 3801-3806.	1.8	48
78	Enhancement of fructosyltransferase and fructooligosaccharides production by A. oryzae DIA-MF in Solid-State Fermentation using aguamiel as culture medium. Bioresource Technology, 2016, 213, 276-282.	4.8	48
79	Influence of aeration rate and carrier concentration on xylitol production from sugarcane bagasse hydrolyzate in immobilized-cell fluidized bed reactor. Process Biochemistry, 2005, 40, 113-118.	1.8	47
80	Study of xylitol production by Candida guilliermondii on a bench bioreactor. Journal of Food Engineering, 2006, 75, 115-119.	2.7	47
81	Bioactive compounds (phytoestrogens) recovery from Larrea tridentata leaves by solvents extraction. Separation and Purification Technology, 2012, 88, 163-167.	3.9	47
82	Xylitol production from high xylose concentration: evaluation of the fermentation in bioreactor under different stirring rates. Journal of Applied Microbiology, 2003, 95, 331-337.	1.4	45
83	Fungal fucoidanase production by solid-state fermentation in a rotating drum bioreactor using algal biomass as substrate. Food and Bioproducts Processing, 2013, 91, 587-594.	1.8	43
84	Adaptation of a flocculent Saccharomyces cerevisiae strain to lignocellulosic inhibitors by cell recycle batch fermentation. Applied Energy, 2013, 102, 124-130.	5.1	43
85	An overview of subcritical and supercritical water treatment of different biomasses for protein and amino acids production and recovery. Journal of Environmental Chemical Engineering, 2020, 8, 104406.	3.3	43
86	A bibliometric analysis on potential uses of brewer's spent grains in a biorefinery for the circular economy transition of the beer industry. Biofuels, Bioproducts and Biorefining, 2021, 15, 1965-1988.	1.9	43
87	Fucoidan-Degrading Fungal Strains: Screening, Morphometric Evaluation, and Influence of Medium Composition. Applied Biochemistry and Biotechnology, 2010, 162, 2177-2188.	1.4	42
88	Malolactic fermentation of wines with immobilised lactic acid bacteria $\hat{a}\in$ Influence of concentration, type of support material and storage conditions. Food Chemistry, 2013, 138, 1510-1514.	4.2	42
89	Adaptive laboratory evolution of Rhodosporidium toruloides to inhibitors derived from lignocellulosic biomass and genetic variations behind evolution. Bioresource Technology, 2021, 333, 125171.	4.8	42
90	Evaluation of porous glass and zeolite as cells carriers for xylitol production from sugarcane bagasse hydrolysate. Biochemical Engineering Journal, 2005, 23, 1-9.	1.8	41

#	Article	IF	CITATIONS
91	Ethanol production by a new pentoseâ€fermenting yeast strain, <i>Scheffersomyces stipitis</i> UFMGâ€IMH 43.2, isolated from the Brazilian forest. Yeast, 2011, 28, 547-554.	0.8	41
92	Detoxification of sugarcane bagasse hemicellulosic hydrolysate with ion-exchange resins for xylitol production by calcium alginate-entrapped cells. Journal of Chemical Technology and Biotechnology, 2004, 79, 863-868.	1.6	40
93	Ethanol production from xylose by Pichia stipitis NRRL Y-7124 in a stirred tank bioreactor. Brazilian Journal of Chemical Engineering, 2011, 28, 151-156.	0.7	40
94	Evaluating the potential of wine-making residues and corn cobs as support materials for cell immobilization for ethanol production. Industrial Crops and Products, 2011, 34, 979-985.	2.5	40
95	Brazilian biorefineries from second generation biomass: critical insights from industry and future perspectives. Biofuels, Bioproducts and Biorefining, 2021, 15, 1190-1208.	1.9	40
96	Kinetic behavior of Candida guilliermondii yeast during xylitol production from highly concentrated hydrolysate. Process Biochemistry, 2004, 39, 1433-1439.	1.8	39
97	Inhibitory action of toxic compounds present in lignocellulosic hydrolysates on xylose to xylitol bioconversion by Candida guilliermondii. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 71-78.	1.4	39
98	Pretreatment of switchgrass by steam explosion in a semi-continuous pre-pilot reactor. Biomass and Bioenergy, 2019, 121, 41-47.	2.9	39
99	Start-up phase of a two-stage anaerobic co-digestion process: hydrogen and methane production from food waste and vinasse from ethanol industry. Biofuel Research Journal, 2018, 5, 813-820.	7.2	38
100	Xylitol production in a bubble column bioreactor: Influence of the aeration rate and immobilized system concentration. Process Biochemistry, 2007, 42, 258-262.	1.8	37
101	Interference of some aqueous two-phase system phase-forming components in protein determination by the Bradford method. Analytical Biochemistry, 2012, 421, 719-724.	1.1	37
102	Scaling up xylitol bioproduction: Challenges to achieve a profitable bioprocess. Renewable and Sustainable Energy Reviews, 2022, 154, 111789.	8.2	37
103	Î ² -Fructofuranosidase production by repeated batch fermentation with immobilized Aspergillus japonicus. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 923-928.	1.4	36
104	Kinetic study of nordihydroguaiaretic acid recovery from <i>Larrea tridentata</i> by microwaveâ€essisted extraction. Journal of Chemical Technology and Biotechnology, 2010, 85, 1142-1147.	1.6	36
105	Development of an acetic acid tolerant Spathaspora passalidarum strain through evolutionary engineering with resistance to inhibitors compounds of autohydrolysate of Eucalyptus globulus. Industrial Crops and Products, 2017, 106, 5-11.	2.5	36
106	Restructuring the processes for furfural and xylose production from sugarcane bagasse in a biorefinery concept for ethanol production. Chemical Engineering and Processing: Process Intensification, 2014, 85, 196-202.	1.8	35
107	Biomass Pretreatment, Biorefineries, and Potential Products for a Bioeconomy Development. , 2016, , 1-22.		35
108	Biotechnological Potential of Brewing Industry By-Products., 2009,, 313-326.		34

#	Article	IF	CITATIONS
109	Production of thermostable xylanase by thermophilic fungal strains isolated from maize silage. CYTA - Journal of Food, 2016, 14, 302-308.	0.9	32
110	Strategies for an improved extraction and separation of lipids and carotenoids from oleaginous yeast. Separation and Purification Technology, 2021, 257, 117946.	3.9	32
111	Effects of inhibitory compounds derived from lignocellulosic biomass on the growth of the wild-type and evolved oleaginous yeast Rhodosporidium toruloides. Industrial Crops and Products, 2021, 170, 113799.	2.5	32
112	Cell immobilization and xylitol production using sugarcane bagasse as raw material. Applied Biochemistry and Biotechnology, 2007, 141, 215-227.	1.4	31
113	Reactive dyes and textile effluent decolorization by a mediator system of salt-tolerant laccase from Peniophora cinerea. Separation and Purification Technology, 2014, 135, 183-189.	3.9	31
114	Production of xylitol and carotenoids from switchgrass and Eucalyptus globulus hydrolysates obtained by intensified steam explosion pretreatment. Industrial Crops and Products, 2021, 170, 113800.	2.5	31
115	High Gravity Brewing by Continuous Process Using Immobilised Yeast: Effect of Wort Original Gravity on Fermentation Performance. Journal of the Institute of Brewing, 2007, 113, 391-398.	0.8	28
116	Production of fructooligosaccharides and \hat{l}^2 -fructofuranosidase by batch and repeated batch fermentation with immobilized cells of Penicillium expansum. European Food Research and Technology, 2012, 235, 13-22.	1.6	27
117	Xylitol production in immobilized cultures: a recent review. Critical Reviews in Biotechnology, 2016, 36, 691-704.	5.1	27
118	A spatially explicit assessment of sugarcane vinasse as a sustainable by-product. Science of the Total Environment, 2021, 765, 142717.	3.9	27
119	Techno-economic assessment of subcritical water hydrolysis process for sugars production from brewer's spent grains. Industrial Crops and Products, 2021, 171, 113836.	2.5	27
120	New trends in bioprocesses for lignocellulosic biomass and CO2 utilization. Renewable and Sustainable Energy Reviews, 2021, 152, 111620.	8.2	27
121	Recovery of Peniophora cinerea laccase using aqueous two-phase systems composed by ethylene oxide/propylene oxide copolymer and potassium phosphate salts. Journal of Chromatography A, 2013, 1321, 14-20.	1.8	26
122	Increasing the Sustainability of the Coffee Agro-Industry: Spent Coffee Grounds as a Source of New Beverages. Beverages, 2018, 4, 105.	1.3	26
123	Production of Itaconic Acid from Cellulose Pulp: Feedstock Feasibility and Process Strategies for an Efficient Microbial Performance. Energies, 2020, 13, 1654.	1.6	26
124	Exploiting new biorefinery models using non-conventional yeasts and their implications for sustainability. Bioresource Technology, 2020, 309, 123374.	4.8	26
125	Laccase production by free and immobilized mycelia of Peniophora cinerea and Trametes versicolor: a comparative study. Bioprocess and Biosystems Engineering, 2013, 36, 365-373.	1.7	25
126	Recovery of sugars and amino acids from brewers' spent grains using subcritical water hydrolysis in a single and two sequential semi-continuous flow-through reactors. Food Research International, 2022, 157, 111470.	2.9	25

#	Article	IF	Citations
127	Solid-State Fermentation as a Strategy to Improve the Bioactive Compounds Recovery from Larrea tridentata Leaves. Applied Biochemistry and Biotechnology, 2013, 171, 1227-1239.	1.4	24
128	Xilitol: edulcorante com efeitos ben \tilde{A} ©ficos para a sa \tilde{A} °de humana. BJPS: Brazilian Journal of Pharmaceutical Sciences, 2002, 38, 401-413.	0.5	23
129	Production of white wine by Saccharomyces cerevisiae immobilized on grape pomace. Journal of the Institute of Brewing, 2012, 118, 163-173.	0.8	23
130	Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing basidiomycetes strains. Letters in Applied Microbiology, 2013, 56, 283-290.	1.0	23
131	Economic analysis and environmental impact assessment of three different fermentation processes for fructooligosaccharides production. Bioresource Technology, 2015, 198, 673-681.	4.8	23
132	Maximizing the simultaneous production of lipids and carotenoids by Rhodosporidium toruloides from wheat straw hydrolysate and perspectives for large-scale implementation. Bioresource Technology, 2021, 340, 125598.	4.8	23
133	Kinetic Behavior of Candida guilliermondii Yeast during Xylitol Production from Brewerapos;s Spent Grain Hemicellulosic Hydrolysate. Biotechnology Progress, 2008, 21, 1352-1356.	1.3	22
134	Fructo-oligosaccharides (FOS) production by fungal submerged culture using aguamiel as a low-cost by-product. LWT - Food Science and Technology, 2019, 102, 75-79.	2.5	22
135	Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media. Applied Microbiology and Biotechnology, 2006, 72, 681-686.	1.7	21
136	Isolation and physicochemical characterization of different lignin streams generated during the second-generation ethanol production process. International Journal of Biological Macromolecules, 2019, 129, 497-510.	3.6	20
137	Evaluation of nutrient supplementation to charcoal-treated and untreated rice straw hydrolysate for xylitol production by Candida guilliermondii. Brazilian Archives of Biology and Technology, 2005, 48, 497-502.	0.5	20
138	Purification of Xylitol from Fermented Hemicellulosic Hydrolyzate Using Liquid–Liquid Extraction and Precipitation Techniques. Biotechnology Letters, 2005, 27, 1113-1115.	1.1	19
139	Influence of temperature on continuous high gravity brewing with yeasts immobilized on spent grains. European Food Research and Technology, 2008, 228, 257-264.	1.6	19
140	Synthesis and Application of Heterogeneous Catalysts Based on Heteropolyacids for 5-Hydroxymethylfurfural Production from Glucose. Energies, 2020, 13, 655.	1.6	19
141	Integrated continuous winemaking process involving sequential alcoholic and malolactic fermentations with immobilized cells. Process Biochemistry, 2014, 49, 1-9.	1.8	18
142	Ethanol Production from High Solid Loading of Rice Straw by Simultaneous Saccharification and Fermentation in a Non-Conventional Reactor. Energies, 2020, 13, 2090.	1.6	18
143	A closer look at the developments and impact of biofuels in transport and environment; what are the next steps?. Biofuel Research Journal, 2016, 3, 331-331.	7.2	18
144	Application of Xylitol in Food Formulations and Benefits for Health., 2012,, 309-323.		17

#	Article	IF	CITATIONS
145	Gallic Acid Production with Mouldy Polyurethane Particles Obtained from Solid State Culture of Aspergillus niger GH1. Applied Biochemistry and Biotechnology, 2015, 176, 1131-1140.	1.4	16
146	Subcritical water hydrolysis of poultry feathers for amino acids production. Journal of Supercritical Fluids, 2022, 181, 105492.	1.6	16
147	A study on the recovery of xylitol by batch adsorption and crystallization from fermented sugarcane bagasse hydrolysate. Journal of Chemical Technology and Biotechnology, 2006, 81, 1840-1845.	1.6	15
148	Influence of thermal effect on sugars composition of Mexican Agave syrup. CYTA - Journal of Food, 2015, , 1-6.	0.9	15
149	Generating Biomedical Polyphenolic Compounds from Spent Coffee or Silverskin. , 2015, , 93-106.		15
150	Immobilized cells cultivated in semi-continuous mode in a fluidized bed reactor for xylitol production from sugarcane bagasse. World Journal of Microbiology and Biotechnology, 2005, 21, 531-535.	1.7	14
151	Improvement on d-xylose to Xylitol Biotransformation by Candida guilliermondii Using Cells Permeabilized with Triton X-100 and Selected Process Conditions. Applied Biochemistry and Biotechnology, 2016, 180, 969-979.	1.4	14
152	Cellulose: a key polymer for a greener, healthier, and bio-based future. Biofuel Research Journal, 2016, 3, 482-482.	7.2	14
153	Variables That Affect Xylitol Production from Sugarcane Bagasse Hydrolysate in a Zeolite Fluidized Bed Reactor. Biotechnology Progress, 2005, 21, 1639-1643.	1.3	13
154	L-asparaginase Production by Leucosporidium scottii in a Bench-Scale Bioreactor With Co-production of Lipids. Frontiers in Bioengineering and Biotechnology, 2020, 8, 576511.	2.0	13
155	Dry Anaerobic Digestion of Food Industry by-Products and Bioenergy Recovery: A Perspective to Promote the Circular Economy Transition. Waste and Biomass Valorization, 2022, 13, 2575-2589.	1.8	13
156	Consecutive alcoholic fermentations of white grape musts with yeasts immobilized on grape skins – Effect of biocatalyst storage and SO2 concentration on wine characteristics. LWT - Food Science and Technology, 2014, 59, 1114-1122.	2.5	12
157	Production of 5-Hydroxymethylfurfural from Direct Conversion of Cellulose Using Heteropolyacid/Nb2O5 as Catalyst. Catalysts, 2020, 10, 1417.	1.6	12
158	Bacteriocin-like inhibitory substances production by Enterococcus faecium 135 in co-culture with Ligilactobacillus salivarius and Limosilactobacillus reuteri. Brazilian Journal of Microbiology, 2022, 53, 131-141.	0.8	12
159	Biobased biorefineries: Sustainable bioprocesses and bioproducts from biomass/bioresources special issue. Renewable and Sustainable Energy Reviews, 2022, 167, 112683.	8.2	12
160	Biomass Pretreatment With Acids. , 2016, , 169-185.		10
161	Hyaluronidase-inhibitory activities of glycosaminoglycans from Liparis tessellatus eggs. Carbohydrate Polymers, 2017, 161, 16-20.	5.1	10
162	Xylanase pretreatment of energy cane enables facile cellulose nanocrystal isolation. Cellulose, 2021, 28, 799-812.	2.4	10

#	Article	IF	Citations
163	An approach to cellulase recovery from enzymatic hydrolysis of pretreated sugarcane bagasse with high lignin content. Biocatalysis and Biotransformation, 2015, 33, 287-297.	1.1	9
164	Enzyme-assisted extraction of anticoagulant polysaccharide from Liparis tessellatus eggs. International Journal of Biological Macromolecules, 2015, 74, 601-607.	3.6	9
165	A vertical ball mill as a new reactor design for biomass hydrolysis and fermentation process. Renewable Energy, 2017, 114, 775-780.	4.3	9
166	Avaliação de diferentes tipos de carvão ativo na destoxificação de hidrolisado de palha de arroz para produção de xilitol. Food Science and Technology, 2004, 24, 94-100.	0.8	8
167	Optimal glucose and inoculum concentrations for production of bioactive molecules by Paenibacillus polymyxa RNC-D. Chemical Papers, 2012, 66, .	1.0	8
168	A robotic platform to screen aqueous two-phase systems for overcoming inhibition in enzymatic reactions. Bioresource Technology, 2019, 280, 37-50.	4.8	8
169	Properties and volatile profile of process flavorings prepared from d-xylose with glycine, alanine or valine by direct extrusion method. Food Bioscience, 2021, 44, 101371.	2.0	8
170	Effects of Inhibitory Compounds Present in Lignocellulosic Biomass Hydrolysates on the Growth of Bacillus subtilis. Energies, 2021, 14, 8419.	1.6	8
171	Bioprocess intensification: Cases that (don't) work. New Biotechnology, 2021, 61, 108-115.	2.4	7
172	A critical assessment of the Flory-Huggins (FH) theory to predict aqueous two-phase behaviour. Separation and Purification Technology, 2021, 255, 117636.	3.9	7
173	Aloe vera and Probiotics: A New Alternative to Symbiotic Functional Foods. Annual Research & Review in Biology, 2016, 9, 1-11.	0.4	7
174	Model development for the optimization of operational conditions of the pretreatment of wheat straw. Chemical Engineering Journal, 2022, 430, 133106.	6.6	7
175	Utilização de mostos concentrados na produção de cervejas pelo processo contÃnuo: novas tendências para o aumento da produtividade. Food Science and Technology, 2007, 27, 37-40.	0.8	6
176	TYPICAL MEXICAN AGROINDUSTRIAL RESIDUES AS SUPPORTS FOR SOLID-STATE FERMENTATION. American Journal of Agricultural and Biological Science, 2014, 9, 289-293.	0.9	6
177	Microwave-Assisted Extraction of Fucoidan from Marine Algae. Methods in Molecular Biology, 2015, 1308, 151-157.	0.4	6
178	Technoeconomic Considerations for Biomass Fractionation in a Biorefinery Context., 2016,, 587-610.		6
179	Waste Management Strategies; the State of the Art. Biofuel and Biorefinery Technologies, 2018, , 1-33.	0.1	6
180	Comparative evaluation of acid and alkaline sulfite pretreatments for enzymatic saccharification of bagasses from three different sugarcane hybrids. Biotechnology Progress, 2018, 34, 944-951.	1.3	6

#	Article	IF	CITATIONS
181	Enzymatic Hydrolysis of Sugarcane Bagasse in Aqueous Two-Phase Systems (ATPS): Exploration and Conceptual Process Design. Frontiers in Chemistry, 2020, 8, 587.	1.8	6
182	Influence of trace elements supplementation on the production of recombinant frutalin by Pichia pastoris KM71H in fed-batch process. Chemical Papers, 2013, 67, .	1.0	5
183	Valorization of Pinus taeda hemicellulosic hydrolysate for the production of value-added compounds in an ethanol biorefinery. Fuel, 2022, 318, 123489.	3.4	5
184	Production of process flavorings from methionine, thiamine with d â€xylose or dextrose by direct extrusion: Physical properties and volatile profiles. Journal of Food Science, 2022, , .	1.5	4
185	The Consistency of Yields and Chemical Composition of HTL Bio-Oils from Lignins Produced by Different Preprocessing Technologies. Energies, 2022, 15, 4707.	1.6	4
186	Antioxidant capacity and NDGA content of Larrea tridentata (a desert bush) leaves extracted with different solvents. Journal of Biotechnology, 2010, 150, 500-500.	1.9	3
187	Fixed-Bed Column Process as a Strategy for Separation and Purification of Cephamycin C from Fermented Broth. Industrial & Engineering Chemistry Research, 2015, 54, 3018-3026.	1.8	3
188	Production of a Transfructosylating Enzymatic Activity Associated to Fructooligosaccharides. Energy, Environment, and Sustainability, 2019, , 345-355.	0.6	3
189	Surrogate Modelling Based Uncertainty and Sensitivity Analysis for the Downstream Process Design of a Xylitol Biorefinery. Computer Aided Chemical Engineering, 2020, , 1663-1668.	0.3	3
190	Transformation of sugarcane molasses into fructooligosaccharides with enhanced prebiotic activity using whole-cell biocatalysts from Aureobasidium pullulans FRR 5284 and an invertase-deficient Saccharomyces cerevisiae 1403-7A. Bioresources and Bioprocessing, 2021, 8, .	2.0	3
191	Propiedades quilmicas, estructurales y funcionales de la lechuguilla (Agave lechuguilla Torr.). Revista Mexicana De Ciencias Forestales, 2017, 8, .	0.1	3
192	Optimization of sulphated polysaccharides recovery from brown seaweeds by microwave-assisted extraction. Journal of Biotechnology, 2010, 150, 394-395.	1.9	2
193	Sustainable Aviation Fuels: Production, Use and Impact on Decarbonization., 2022,, 348-371.		2
194	Physicochemical Characterization of the Yeast Cells and Lignocellulosic Waste Used in Cell Immobilization for Ethanol Production., 2017,,.		1
195	Cultivation of fungal strains using coffee industry residues as alternative growth substrates. Journal of Biotechnology, 2010, 150, 401-401.	1.9	0
196	Preparation and properties of biodegradable cat litter produced from cassava (Manihot esculenta L.) Tj ETQq0 0 (0 rgBT /Ov	erlock 10 Tf 5
197	Beer. Contemporary Food Engineering, 2013, , 429-444.	0.2	O