List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5832913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Generalized Description of Aquatic Colloidal Interactions:Â The Three-colloidal Component Approach. Environmental Science & Technology, 1998, 32, 2887-2899.	4.6	509
2	Characterizing Manufactured Nanoparticles in the Environment: Multimethod Determination of Particle Sizes. Environmental Science & amp; Technology, 2009, 43, 7277-7284.	4.6	500
3	Aquatic Colloids and Nanoparticles: Current Knowledge and Future Trends. Environmental Chemistry, 2006, 3, 159.	0.7	431
4	Aggregation of Titanium Dioxide Nanoparticles: Role of a Fulvic Acid. Environmental Science & Technology, 2009, 43, 1282-1286.	4.6	409
5	Diffusion of Nanoparticles in a Biofilm. Environmental Science & amp; Technology, 2011, 45, 3367-3373.	4.6	327
6	Predicting the Bioavailability of Metals and Metal Complexes: Critical Review of the Biotic Ligand Model. Environmental Chemistry, 2005, 2, 9.	0.7	289
7	Diffusion Coefficients of Several Rhodamine Derivatives as Determined by Pulsed Field Gradient–Nuclear Magnetic Resonance and Fluorescence Correlation Spectroscopy. Journal of Fluorescence, 2008, 18, 1093-1101.	1.3	288
8	Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nature Food, 2020, 1, 416-425.	6.2	239
9	Accumulation of natural organic matter on the surfaces of living cells: implications for the interaction of toxic solutes with aquatic biota. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54, 2543-2554.	0.7	225
10	Bioavailability ofÂtrace metals toÂaquatic microorganisms: importance ofÂchemical, biological andÂphysical processes onÂbiouptake. Biochimie, 2006, 88, 1721-1731.	1.3	211
11	Characteristic features of the major components of freshwater colloidal organic matter revealed by transmission electron and atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 155, 287-310.	2.3	177
12	Humic Substances Are Soft and Permeable: Evidence from Their Electrophoretic Mobilitiesâ€. Environmental Science & Technology, 2005, 39, 6435-6445.	4.6	175
13	Fibrillar polysaccharides in marine macromolecular organic matter as imaged by atomic force microscopy and transmission electron microscopy. Limnology and Oceanography, 1998, 43, 896-908.	1.6	169
14	Atomic Force Microscopy of Humic Substances:Â Effects of pH and Ionic Strength. Environmental Science & Technology, 1999, 33, 3911-3917.	4.6	159
15	Single Molecule Study of Xanthan Conformation Using Atomic Force Microscopy. Biomacromolecules, 2001, 2, 1184-1191.	2.6	159
16	Discriminating between intra―and extracellular metals using chemical extractions. Limnology and Oceanography: Methods, 2004, 2, 237-247.	1.0	155
17	Chemical and biological leaching of aluminum from red mud. Environmental Science & Technology, 1994, 28, 26-30.	4.6	153
18	Diffusion Coefficients and Polydispersities of the Suwannee River Fulvic Acid:Â Comparison of Fluorescence Correlation Spectroscopy, Pulsed-Field Gradient Nuclear Magnetic Resonance, and Flow Field-Flow Fractionation. Environmental Science & Technology, 2000, 34, 3508-3513.	4.6	143

KEVIN JAMES WILKINSON

#	Article	IF	CITATIONS
19	Coagulation of colloidal material in surface waters: the role of natural organic matter. Journal of Contaminant Hydrology, 1997, 26, 229-243.	1.6	135
20	Physicochemical Aspects of Lead Bioaccumulation byChlorella vulgaris. Environmental Science & Technology, 2002, 36, 969-975.	4.6	135
21	Different roles of pedogenic fulvic acids and aquagenic biopolymers on colloid aggregation and stability in freshwaters. Limnology and Oceanography, 1997, 42, 1714-1724.	1.6	127
22	Cadmium Uptake by a Green Alga Can Be Predicted by Equilibrium Modelling. Environmental Science & Technology, 2005, 39, 3040-3047.	4.6	123
23	Determination of Diffusion Coefficients of Humic Substances by Fluorescence Correlation Spectroscopy:Â Role of Solution Conditions. Environmental Science & Technology, 2000, 34, 1365-1369.	4.6	117
24	Bioaccumulation of Nanosilver by <i>Chlamydomonas reinhardtii</i> —Nanoparticle or the Free Ion?. Environmental Science & Technology, 2014, 48, 358-364.	4.6	117
25	Transcriptome Sequencing (RNA-seq) Analysis of the Effects of Metal Nanoparticle Exposure on the Transcriptome of Chlamydomonas reinhardtii. Applied and Environmental Microbiology, 2013, 79, 4774-4785.	1.4	115
26	Effects of silver nanoparticles on soil enzyme activities with and without added organic matter. Environmental Toxicology and Chemistry, 2014, 33, 115-125.	2.2	112
27	Bioaccumulation and Effects of CdTe/CdS Quantum Dots on <i>Chlamydomonas reinhardtii</i> – Nanoparticles or the Free Ions?. Environmental Science & Technology, 2011, 45, 7664-7669.	4.6	111
28	Role of Fulvic Acid on Lead Bioaccumulation byChlorella kesslerii. Environmental Science & Technology, 2003, 37, 1114-1121.	4.6	106
29	Multimethod quantification of Ag+ release from nanosilver. Talanta, 2013, 105, 15-19.	2.9	102
30	Deposition of TiO ₂ Nanoparticles onto Silica Measured Using a Quartz Crystal Microbalance with Dissipation Monitoring. Langmuir, 2009, 25, 6062-6069.	1.6	101
31	SOME FUNDAMENTAL (AND OFTEN OVERLOOKED) CONSIDERATIONS UNDERLYING THE FREE ION ACTIVITY AND BIOTIC LIGAND MODELS. Environmental Toxicology and Chemistry, 2004, 23, 283.	2.2	100
32	Determination of Electrophoretic Mobilities and Hydrodynamic Radii of Three Humic Substances as a Function of pH and Ionic Strength. Environmental Science & Technology, 2001, 35, 4301-4306.	4.6	93
33	Detection and Characterization of ZnO Nanoparticles in Surface and Waste Waters Using Single Particle ICPMS. Environmental Science & Technology, 2015, 49, 6141-6148.	4.6	92
34	When are metal complexes bioavailable?. Environmental Chemistry, 2016, 13, 425.	0.7	90
35	Regulation of Zn Accumulation by a Freshwater Gram-Positive Bacterium (Rhodococcus opacus). Environmental Science & Technology, 2000, 34, 616-622.	4.6	89
36	Sample preparation techniques for the observation of environmental biopolymers by atomic force microscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 207, 229-242.	2.3	87

#	Article	IF	CITATIONS
37	Improvements to Single Particle ICPMS by the Online Coupling of Ion Exchange Resins. Analytical Chemistry, 2014, 86, 4668-4674.	3.2	85
38	Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles. Chemistry Central Journal, 2013, 7, 75.	2.6	84
39	Influence of the Composition of Natural Organic Matter on Pb Bioavailability to Microalgae. Environmental Science & Technology, 2005, 39, 6109-6116.	4.6	78
40	Conformations of Succinoglycan As Observed by Atomic Force Microscopy. Macromolecules, 2000, 33, 7440-7447.	2.2	76
41	Validation of the Biotic Ligand Model in Metal Mixtures: Bioaccumulation of Lead and Copper. Environmental Science & Technology, 2010, 44, 3580-3586.	4.6	74
42	Chemodynamics and Bioavailability in Natural Waters. Environmental Science & Technology, 2009, 43, 7170-7174.	4.6	73
43	Aggregation of titanium dioxide nanoparticles: role of calcium and phosphate. Environmental Chemistry, 2010, 7, 61.	0.7	70
44	Quantifying Diffusion in a Biofilm of <i>Streptococcus mutans</i> . Antimicrobial Agents and Chemotherapy, 2011, 55, 1075-1081.	1.4	69
45	Aquatic toxicity of manufactured nanomaterials: challenges and recommendations for future toxicity testing. Environmental Chemistry, 2014, 11, 207.	0.7	69
46	Disaggregation Kinetics of a Peat Humic Acid:  Mechanism and pH Effects. Environmental Science & Technology, 2002, 36, 5100-5105.	4.6	68
47	Failure of the biotic ligand and freeâ€ion activity models to explain zinc bioaccumulation by <i>Chlorella kesslerii</i> . Environmental Toxicology and Chemistry, 2003, 22, 620-626.	2.2	68
48	Effects of inhaled nano-TiO2 aerosols showing two distinct agglomeration states on rat lungs. Toxicology Letters, 2012, 214, 109-119.	0.4	68
49	Metallic nanoparticles induced antibiotic resistance genes attenuation of leachate culturable microbiota: The combined roles of growth inhibition, ion dissolution and oxidative stress. Environment International, 2019, 128, 407-416.	4.8	68
50	Permeation liquid membrane as a tool for monitoring bioavailable Pb in natural waters. Science of the Total Environment, 2004, 328, 55-68.	3.9	66
51	Key challenges for evaluation of the safety of engineered nanomaterials. NanoImpact, 2020, 18, 100219.	2.4	66
52	Effect of Pseudokirchneriella subcapitata (Chlorophyceae) exudates on metal toxicity and colloid aggregation. Water Research, 2007, 41, 63-70.	5.3	65
53	Characterization of H+ and Cd2+ binding properties of the bacterial exopolysaccharides. Chemosphere, 2006, 65, 1362-1370.	4.2	64
54	Quantification of ZnO nanoparticles and other Zn containing colloids in natural waters using a high sensitivity single particle ICP-MS. Talanta, 2019, 200, 156-162.	2.9	64

#	Article	IF	CITATIONS
55	Lowering the Size Detection Limits of Ag and TiO ₂ Nanoparticles by Single Particle ICP-MS. Analytical Chemistry, 2019, 91, 13275-13284.	3.2	62
56	Cd Bioaccumulation by a Freshwater Bacterium,Rhodospirillum rubrum. Environmental Science & Technology, 2003, 37, 701-706.	4.6	61
57	Quantifying Pb and Cd Complexation by Alginates and the Role of Metal Binding on Macromolecular Aggregation. Biomacromolecules, 2005, 6, 2756-2764.	2.6	60
58	Diffusion Coefficients of Humic Substances in Agarose Gel and in Water. Environmental Science & Technology, 2003, 37, 482-487.	4.6	59
59	Ultrafiltration and its Applications to Sampling and Characterisation of Aquatic Colloids. , 2007, , 159-221.		59
60	Separation, detection and characterisation of engineered nanoparticles in natural waters using hydrodynamic chromatography and multi-method detection (light scattering, analytical) Tj ETQq0 0 0 rgBT /Ove	rlo ck710 Ti	f 5 6ຣ 37 Td (ເ
61	Agglomeration and dissolution of zinc oxide nanoparticles: role of pH, ionic strength and fulvic acid. Environmental Chemistry, 2013, 10, 306.	0.7	57
62	Effect of Fluoride Complexation on Aluminum Toxicity Towards Juvenile Atlantic Salmon (Salmo) Tj ETQq0 0 0 rg	;BT /Qverlc	ock_10 Tf 50 4
63	Critical Evaluation of Physicochemical Parameters and Processes for Modelling the Biological Uptake of Trace Metals in Environmental (Aquatic) Systems. , 2004, , 445-533.		56
64	Ni Uptake by a Green Alga. 2. Validation of Equilibrium Models for Competition Effects. Environmental Science & Technology, 2007, 41, 4264-4270.	4.6	56
65	Biotic Ligand Model Does Not Predict the Bioavailability of Rare Earth Elements in the Presence of Organic Ligands. Environmental Science & Technology, 2015, 49, 2207-2214.	4.6	52
66	Characterization of Norwegian natural organic matter: Size, diffusion coefficients, and electrophoretic mobilities. Environment International, 1999, 25, 245-258.	4.8	50
67	The effects of different coatings on zinc oxide nanoparticles and their influence on dissolution and bioaccumulation by the green alga, C. reinhardtii. Science of the Total Environment, 2014, 488-489, 316-324.	3.9	50
68	Surface complexation of aluminum on isolated fish gill cells. Environmental Science & Technology, 1993, 27, 1132-1138.	4.6	49
69	Transformations of silver nanoparticles in wastewater effluents: links to Ag bioavailability. Environmental Science: Nano, 2017, 4, 1339-1349.	2.2	49
70	Biotic ligand model explains the effects of competition but not complexation for Sm biouptake by Chlamydomonas reinhardtii. Chemosphere, 2017, 168, 426-434.	4.2	48
71	Multiplexed SERS Detection of Microcystins with Aptamer-Driven Core–Satellite Assemblies. ACS Applied Materials & Interfaces, 2021, 13, 6545-6556.	4.0	48
72	Combining Small Angle Neutron Scattering (SANS) and Fluorescence Correlation Spectroscopy (FCS) Measurements To Relate Diffusion in Agarose Gels to Structure. Journal of Physical Chemistry B, 2006, 110, 20133-20142.	1.2	46

#	Article	IF	CITATIONS
73	Cadmium bioavailability and speciation using the permeation liquid membrane. Analytica Chimica Acta, 2006, 575, 267-273.	2.6	46
74	Physicochemical characterization of engineered nanoparticles under physiological conditions: Effect of culture media components and particle surface coating. Colloids and Surfaces B: Biointerfaces, 2012, 91, 198-204.	2.5	45
75	Diffusion of ions in a calcium alginate hydrogel-structure is the primary factor controlling diffusion. Carbohydrate Polymers, 2013, 94, 82-87.	5.1	45
76	Relating the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) to Their Bactericidal Effect towards a Biofilm of Streptococcus mutans. PLoS ONE, 2016, 11, e0154445.	1.1	45
77	Determination of diffusion coefficients of nanoparticles and humic substances using scanning stripping chronopotentiometry (SSCP). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 295, 200-208.	2.3	44
78	Quantification and Characterization of Ti-, Ce-, and Ag-Nanoparticles in Global Surface Waters and Precipitation. Environmental Science & amp; Technology, 2021, 55, 9836-9844.	4.6	42
79	Bioavailability of trace metals and rare earth elements (REE) from the tropical soils of a coal mining area. Science of the Total Environment, 2020, 717, 134484.	3.9	40
80	Transcriptomic signatures in Chlamydomonas reinhardtii as Cd biomarkers in metal mixtures. Aquatic Toxicology, 2010, 100, 120-127.	1.9	38
81	Linking the chemical speciation of cerium to its bioavailability in water for a freshwater alga. Environmental Toxicology and Chemistry, 2015, 34, 1711-1719.	2.2	38
82	Colloidal Properties of Submicron Particles in Natural Waters. , 2007, , 17-93.		35
83	Aluminum bioconcentration at the gill surface of juvenile Atlantic salmon in acidic media. Environmental Toxicology and Chemistry, 1993, 12, 2083-2095.	2.2	34
84	Characterization of NOM-colloid aggregates in surface waters: Coupling transmission electron microscopy staining techniques and mathematical modelling. Fresenius' Journal of Analytical Chemistry, 1995, 351, 54-61.	1.5	34
85	Effect of pH on Pb biouptake by the freshwater alga Chlorella kesslerii. Environmental Chemistry Letters, 2003, 1, 185-189.	8.3	34
86	Effects of cadmium telluride quantum dots on cadmium bioaccumulation and metallothionein production to the freshwater mussel, Elliptio complanata. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2009, 150, 246-251.	1.3	34
87	Practical limitations of single particle ICP-MS in the determination of nanoparticle size distributions and dissolution: case of rare earth oxides. Talanta, 2017, 163, 121-126.	2.9	34
88	Cadmium Adsorption by Chlamydomonas reinhardtii and its Interaction with the Cell Wall Proteins. Environmental Chemistry, 2004, 1, 172.	0.7	33
89	Impact of zinc acclimation on bioaccumulation and homeostasis in Chlorella kesslerii. Aquatic Toxicology, 2005, 74, 139-149.	1.9	33
90	Electrohydrodynamic Properties of Succinoglycan as Probed by Fluorescence Correlation Spectroscopy, Potentiometric Titration and Capillary Electrophoresis. Biomacromolecules, 2006, 7, 2818-2826.	2.6	33

#	Article	IF	CITATIONS
91	Global expression profiling of <i>Chlamydomonas reinhardtii</i> exposed to trace levels of free cadmium. Environmental Toxicology and Chemistry, 2008, 27, 1668-1675.	2.2	33
92	Diffusion and Partitioning of Cations in an Agarose Hydrogel. Journal of Physical Chemistry A, 2012, 116, 6505-6510.	1.1	33
93	Chronic sublethal exposure to silver nanoparticles disrupts thyroid hormone signaling during Xenopus laevis metamorphosis. Aquatic Toxicology, 2015, 159, 99-108.	1.9	33
94	Evaluation of enhanced darkfield microscopy and hyperspectral analysis to analyse the fate of silver nanoparticles in wastewaters. Analytical Methods, 2017, 9, 3920-3928.	1.3	33
95	Single- and Multi-Element Quantification and Characterization of TiO2 Nanoparticles Released From Outdoor Stains and Paints. Frontiers in Environmental Science, 2020, 8, .	1.5	33
96	Conformational Changes and Aggregation of Alginic Acid as Determined By Fluorescence Correlation Spectroscopy. Biomacromolecules, 2007, 8, 106-112.	2.6	32
97	Separation, detection and characterization of nanomaterials in municipal wastewaters using hydrodynamic chromatography coupled to ICPMS and single particle ICPMS. Analytical and Bioanalytical Chemistry, 2016, 408, 5147-5155.	1.9	32
98	Ni Uptake by a Green Alga. 1. Validation of Equilibrium Models for Complexation Effects. Environmental Science & Technology, 2007, 41, 4258-4263.	4.6	31
99	Incorporation of zinc into the frustule of the freshwater diatom Stephanodiscus hantzschii. Chemical Geology, 2009, 265, 381-386.	1.4	30
100	The role of complexation and competition in the biouptake of europium by a unicellular alga. Environmental Toxicology and Chemistry, 2014, 33, 2609-2615.	2.2	30
101	β-Fibrillogenesis from Rigid-Rod β-Barrels: Hierarchical Preorganization Beyond Microns. Angewandte Chemie - International Edition, 2001, 40, 4657-4661.	7.2	29
102	Determination of Ni2+ using an equilibrium ion exchange technique: Important chemical factors and applicability to environmental samples. Analytica Chimica Acta, 2008, 616, 95-102.	2.6	29
103	The role of charge on the diffusion of solutes and nanoparticles (silicon nanocrystals, nTiO2, nAu) in a biofilm. Environmental Chemistry, 2013, 10, 34.	0.7	29
104	Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii. Environmental Pollution, 2013, 179, 33-38.	3.7	26
105	Biouptake of a rare earth metal (Nd) by Chlamydomonas reinhardtii – Bioavailability of small organic complexes and role of hardness ions. Environmental Pollution, 2018, 243, 263-269.	3.7	26
106	Release of TiO ₂ nanoparticles from painted surfaces in cold climates: characterization using a high sensitivity single-particle ICP-MS. Environmental Science: Nano, 2020, 7, 139-148.	2.2	26
107	Detection, biophysical effects, and toxicity of polystyrene nanoparticles to the cnidarian Hydra attenuata. Environmental Science and Pollution Research, 2020, 27, 11772-11781.	2.7	26
108	Experimental evaluation of the penetration of TiO ₂ nanoparticles through protective clothing and gloves under conditions simulating occupational use. Nanoscience Methods, 2013, 2, 1-15.	1.0	25

#	Article	IF	CITATIONS
109	Conditions affecting the release of thorium and uranium from the tailings of a niobium mine. Environmental Pollution, 2019, 247, 206-215.	3.7	25
110	Nonperturbing Fluorescent Labeling of Polysaccharides. Biomacromolecules, 2002, 3, 857-864.	2.6	23
111	Bioaccumulation of potentially toxic elements from the soils surrounding a legacy uranium mine in Brazil. Chemosphere, 2020, 261, 127679.	4.2	23
112	Laser-Induced Breakdown Detection. , 0, , 555-612.		22
113	Strategies and Advances in the Characterisation of Environmental Colloids by Electron Microscopy Denis Mavrocordatos. , 0, , 345-404.		22
114	Estimating organic acid contributions to surface water acidity in Quebec (Canada). Water, Air, and Soil Pollution, 1992, 61, 57-74.	1.1	21
115	The influence of surface coatings on the toxicity of silver nanoparticle in rainbow trout. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 226, 108623.	1.3	20
116	The permeation liquid membrane as a sensor for free nickel in aqueous samples. Analyst, The, 2007, 132, 262.	1.7	19
117	Environmental Colloids and Particles: Current Knowledge and Future Developments. , 2007, , 1-15.		19
118	Colloid-Trace Element Interactions in Aquatic Systems. , 2007, , 95-157.		19
119	Chemical and microphysical properties of wind-blown dust near an actively retreating glacier in Yukon, Canada. Aerosol Science and Technology, 2020, 54, 2-20.	1.5	19
120	Characterisation of Aquatic Colloids and Macromolecules by Field-Flow Fractionation. , 2007, , 223-276.		18
121	Acute toxicity evaluation of nanoparticles mixtures using luminescent bacteria. Environmental Monitoring and Assessment, 2020, 192, 484.	1.3	18
122	Force Microscopy and Force Measurements of Environmental Colloids. , 0, , 405-467.		18
123	Characterization of Polymeric Nanomaterials Using Analytical Ultracentrifugation. Environmental Science & Technology, 2015, 49, 7302-7309.	4.6	17
124	Physicochemical properties of peptide-coated microelectrode arrays and their in vitro effects on neuroblast cells. Materials Science and Engineering C, 2016, 68, 642-650.	3.8	17
125	Measurement of CeO2 Nanoparticles in Natural Waters Using a High Sensitivity, Single Particle ICP-MS. Molecules, 2020, 25, 5516.	1.7	16
126	Generating Nano-Aerosols from TiO ₂ (5Ânm) Nanoparticles Showing Different Agglomeration States. Application to Toxicological Studies. Journal of Occupational and Environmental Hygiene, 2013, 10, 86-96.	0.4	15

#	Article	IF	CITATIONS
127	Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg–Carbon Bond Cleavage and Metal Binding Specificity. Biochemistry, 2016, 55, 1070-1081.	1.2	15
128	In situ evaluation of cadmium biomarkers in green algae. Environmental Pollution, 2011, 159, 2630-2636.	3.7	14
129	Determination of the speciation and bioavailability of samarium to <i>Chlamydomonas reinhardtii</i> in the presence of natural organic matter. Environmental Toxicology and Chemistry, 2018, 37, 1623-1631.	2.2	14
130	The influence of surface waters on the bioavailability and toxicity of zinc oxide nanoparticles in freshwater mussels. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 219, 1-11.	1.3	14
131	FAILURE OF THE BIOTIC LIGAND AND FREE-ION ACTIVITY MODELS TO EXPLAIN ZINC BIOACCUMULATION BY CHLORELLA KESSLERII. Environmental Toxicology and Chemistry, 2003, 22, 620.	2.2	14
132	Sample preparation for the analysis of nanoparticles in natural waters by single particle ICP-MS. Talanta, 2022, 238, 123060.	2.9	14
133	Interactions between non-phospholipid liposomes containing cetylpyridinium chloride and biofilms of <i>Streptococcus mutans</i> : modulation of the adhesion and of the biodistribution. Biofouling, 2013, 29, 817-827.	0.8	13
134	Environmental and health risk assessment of agricultural areas adjacent to uranium ore fields in Brazil. Environmental Geochemistry and Health, 2020, 42, 3965-3981.	1.8	13
135	Soil Enzyme Activities as an Integral Part of the Environmental Risk Assessment of Nanopesticides. Journal of Agricultural and Food Chemistry, 2020, 68, 8514-8516.	2.4	13
136	Interaction between palladium-doped zerovalent iron nanoparticles and biofilm in granular porous media: characterization, transport and viability. Environmental Science: Nano, 2016, 3, 127-137.	2.2	12
137	Particles in Natural Surface Waters: Chemical Composition and Size Distribution. International Journal of Environmental Analytical Chemistry, 2000, 77, 75-93.	1.8	11
138	Assessing past changes in bioavailable zinc from a terrestrial (Zn/Si)opal record. Chemical Geology, 2009, 258, 362-367.	1.4	11
139	Metal flux through consuming interfaces in ligand mixtures: boundary conditions do not influence the lability and relative contributions of metal species. Physical Chemistry Chemical Physics, 2011, 13, 17606.	1.3	10
140	Lead Bioavailability to Freshwater Microalgae in the Presence of Dissolved Organic Matter: Contrasting Effect of Model Humic Substances and Marsh Water Fractions Obtained by Ultrafiltration. Aquatic Geochemistry, 2015, 21, 217-230.	1.5	10
141	The Influence of Surface Coatings of Silver Nanoparticles on the Bioavailability and Toxicity to <i>Elliptio complanata</i> Mussels. Journal of Nanomaterials, 2019, 2019, 1-10.	1.5	10
142	Porous underwater chamber (PUC) for in-situ determination of nutrient and pollutant bioavailability to microorganisms. Limnology and Oceanography: Methods, 2008, 6, 277-287.	1.0	9
143	Development of a test method for protective gloves against nanoparticles in conditions simulating occupational use. Journal of Physics: Conference Series, 2011, 304, 012066.	0.3	9
144	The influence of zinc chloride and zinc oxide nanoparticles on air-time survival in freshwater mussels. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2015, 172-173, 36-44.	1.3	8

#	Article	IF	CITATIONS
145	Heteroagglomeration of nanosilver with colloidal SiO2 and clay. Environmental Chemistry, 2017, 14, 1.	0.7	8
146	Biological impacts of Ce nanoparticles with different surface coatings as revealed by RNA-Seq in Chlamydomonas reinhardtii. NanoImpact, 2020, 19, 100228.	2.4	8
147	Biophysical effects of polystyrene nanoparticles on Elliptio complanata mussels. Environmental Science and Pollution Research, 2020, 27, 25093-25102.	2.7	8
148	Mixtures of rare earth elements show antagonistic interactions in Chlamydomonas reinhardtii. Environmental Pollution, 2021, 287, 117594.	3.7	8
149	Development of an LC-MS-based method to study the fate of nanoencapsulated pesticides in soils and strawberry plant. Talanta, 2022, 239, 123093.	2.9	8
150	Physicochemical Mechanisms of Trace Metal Bioaccumulation by Microorganisms. Chimia, 2002, 56, 681-684.	0.3	7
151	Anti-staphylococcal biofilm activity of miconazoctylium bromide. Organic and Biomolecular Chemistry, 2018, 16, 4288-4294.	1.5	7
152	Laser Scanning Microscopy for Microbial Flocs and Particles. , 0, , 469-505.		7
153	Contrasting Roles Of Natural Organic Matter On Colloidal Stabilization And Flocculation In Freshwaters. , 2004, , 143-170.		7
154	Experimental evaluation of the resistance of nitrile rubber protective gloves against TiO ₂ nanoparticles in water under conditions simulating occupational use. Journal of Physics: Conference Series, 2013, 429, 012056.	0.3	6
155	Speciation of a lanthanide (Sm) using an ion exchange resin. Analytical Methods, 2016, 8, 6774-6781.	1.3	6
156	Toxicological Effects of Inorganic Nanoparticle Mixtures in Freshwater Mussels. Environments - MDPI, 2020, 7, 109.	1.5	6
157	Optimization of the Hydrolysis of Freshwater Polysaccharides. International Journal of Environmental Analytical Chemistry, 2000, 77, 323-335.	1.8	5
158	Determination of phytochelatins in algal samples using LC-MS. International Journal of Environmental Analytical Chemistry, 2011, 91, 185-196.	1.8	5
159	Study of Environmental Systems by Means of Fluorescence Correlation Spectroscopy. , 0, , 507-553.		5
160	Electrophoresis of Soft Colloids: Basic Principles and Applications. , 0, , 315-344.		5
161	Bioavailability and toxicity of manufactured nanomaterials. Environmental Chemistry, 2014, 11, i.	0.7	4
	Swelling of Flastomers in Solutions of (mml:math		

xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msub><mml:mrow><mml:mtext>TiO</mml:mtext></mml:mrow><mml:mtext>2</mml:mtext></mml:msub Nanoparticles. ISRN Polymer Science, 2012, 2012, 1-8. 162

#	Article	IF	CITATIONS
163	Modern Electrophoretic Techniques for the Characterisation of Natural Organic Matter. , 0, , 277-313.		4
164	Which Gloves Are Efficient To Protect Against Titanium Dioxide Nanoparticles In Work Conditions?. International Journal of Theoretical and Applied Nanotechnology, 0, , .	0.0	4
165	Mechanistic understanding of the aggregation kinetics of nanoplastics in marine environments: Comparing synthetic and natural water matrices. Journal of Hazardous Materials Advances, 2022, 7, 100115.	1.2	4
166	An improved experimental methodology to evaluate the effectiveness of protective gloves against nanoparticles in suspension. Journal of Occupational and Environmental Hygiene, 2017, 14, D95-D101.	0.4	3
167	Role of pH on indium bioaccumulation by Chlamydomonas reinhardtii. Environmental Pollution, 2019, 250, 40-46.	3.7	3
168	Application of FCS to the Study of Environmental Systems. Springer Series in Chemical Physics, 2001, , 251-275.	0.2	3
169	The Influence of Silver Nanoparticle Form on the Toxicity in Freshwater Mussels. Applied Sciences (Switzerland), 2022, 12, 1429.	1.3	3
170	A Novel In Situ Tool for the Exposure and Analysis of Microorganisms in Natural Aquatic Systems. Environmental Science & Technology, 2009, 43, 8240-8244.	4.6	2
171	Probing Environmental Colloids and Particles with X-Rays. , 0, , 613-666.		2
172	Response to â€~Comment on "Determination of Electrophoretic Mobilities and Hydrodynamic Radii of Three Humic Substances as a Function of pH and Ionic Strengthâ€4. Environmental Science & Technology, 2002, 36, 3043-3044.	4.6	1
173	Reply to Comment on "Conformational Changes and Aggregation of Alginic Acid as Determined By Fluorescence Correlation Spectroscopy― Biomacromolecules, 2007, 8, 3280-3280.	2.6	1
174	A tribute to Jacques Buffle: founding father of dynamic metal speciation analysis. Environmental Science & Technology, 2009, 43, 7157-7158.	4.6	1
175	ÉquiNanos: innovative team for nanoparticle risk management. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 22-24.	1.7	1
176	Distinguishing the effects of Ce nanoparticles from their dissolution products: identification of transcriptomic biomarkers that are specific for ionic Ce in Chlamydomonas reinhardtii. Metallomics, 2021, 13, .	1.0	1
177	Aluminum bioconcentration at the gill surface of juvenile Atlantic salmon in acidic media. , 1993, 12, 2083.		1
178	Alumni Profiles. Chimia, 2009, 63, 874-880.	0.3	0
179	The 9th Workshop on (Bio)sensors and Bioanalytical Microtechniques in Environmental and Clinical Analysis. International Journal of Environmental Analytical Chemistry, 2011, 91, 121-122.	1.8	0
180	Foreword to the Research Front on Detection of nanoparticles in the environment. Environmental Chemistry, 2014, 11, i.	0.7	0

#	Article	IF	CITATIONS
181	Challenges for Evaluation of the Safety of Engineered Nanomaterials. Chemistry International, 2021, 43, 4-7.	0.3	О
182	Emerging Issues in Ecotoxicology: Characterization of (Metallic) Nanoparticles in Aqueous Media. , 2013, , 395-406.		0
183	The organomercurial lyase Merb possesses unique metal-binding properties. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C1680-C1680.	0.0	Ο
184	Foreword to the tribute issue for Professor Peter Campbell. Environmental Chemistry, 2016, 13, i.	0.7	0